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Abstract This Deliverable presents a toolbox for ecosystem service modelling 
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1. Executive summary 

Mapping and modelling ecosystem services (ESs) requires integrating different types of information about socio-

ecological systems, including Earth Observation and in-situ data, empirical or process based models, and socio-

economic data. In addition, local experts and stakeholders often have valuable knowledge about their socio-

ecological systems, and involving them in the modelling process can facilitate communication and learning. 

Bayesian Networks (BNs) are a powerful tool for ecosystem service modelling, since they can integrate quantitative 

and qualitative data, including expert or stakeholder knowledge. In addition, the probabilistic structure of the BNs 

explicitly takes into account uncertainties, which are often high in ES assessments, and their graphic representation 

enables communication about the modelled system.  

This toolbox aims to facilitate ecosystem service modelling with BNs by providing a tool to link BNs to spatial data, 

as well as guidelines and practical examples of how to develop, quantify, and validate BN models of ecosystem 

services. 

In the first part, we introduce Bayesian Networks and provide guidelines for creating a BN through the following 

steps: 

1. Defining the model purpose: BNs can be used to map current ESs, model future scenarios, analyse trade-

offs and uncertainties, or develop a common understanding of the system with stakeholders. The next steps 

in the BN development will depend on the purpose and the question that we aim to address.  

2. Defining the nodes: The most important variables in the system (such as key ecosystem services, their 

drivers, and Earth Observation proxies) can be defined through literature review or through a participatory 

process with experts or stakeholders. 

3. Designing the network: The causal relationships between variables are described as directed links in the 

network, which can be developed based on literature, by experts or with stakeholders. 

4. Defining the variable states: A set of possible states needs to be defined for each node in the network. 

5. Quantifying the links: The links between nodes are quantified in conditional probability tables, which can 

be filled using data, models, or expert knowledge.  

6. Testing and evaluating the BN: Once the network is compiled, it can be validated by testing different 

scenarios and observing the outcomes, by stakeholders or experts. It can also be analysed using sensitivity 

analysis.  

For each step, we describe the different approaches that can be used, and illustrate them with examples from case 

studies developed in Ecopotential. We also show the practical implementation of each step in Netica, the BN 

software most commonly used among ecosystem service modellers, while providing information on other software 

options.   

Next, we present gBay, an online platform where users can run their BNs with spatial data. In addition to performing 

inference using raster or vector geodata, gBay enables dynamic BNs – i.e. running the network over multiple time 

steps, where the output of one time step is an input to the next. Furthermore, advanced users can modify spatial 

data directly in gBay, which allows them to take into account spatial interactions (e.g. neighbourhood effects) that 

are often relevant in ecosystem service modelling.  

To help users who are getting started with BN modelling, we provide examples of simple BNs that describe 

ecosystem services (carbon sequestration and storage, wood production, recreation, and habitats). The networks 

are based on real ecosystems in the Swiss Alps, but simplified. They can be downloaded, tested, and modified. In 

addition, we provide spatial data that can be used to test gBay with these networks.  
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Finally, the toolbox includes a set of case studies from the Ecopotential project, where BNs are being used to 

address a variety of questions related to ecosystem services. In Davos (Switzerland), Earth Observation, process-

based and empirical models, and expert knowledge were combined in a BN of avalanche protection, and sensitivity 

analysis was used to identify the most important sources of uncertainty in the model. In the Sierra Nevada, 

stakeholder and expert knowledge is used to model future land use scenarios, while a collaborative modelling 

process in Doñana aims to build a better understanding of factors influencing the waterbird community. An expert-

based BN of the Danube Delta explores trade-offs between provisioning and cultural services, and similar trade-

offs are also addressed in the Wadden Sea by combining expert knowledge and in-situ data. Also for the Wadden 

Sea, a dynamic BN is used to assess the cumulative effect of pressures on mussel abundance over time. In the 

Pelagos Marine Protected area, a BN was developed with local experts to better understand the ecosystem service 

of whale-watching in the area, and its effects on the cetacean populations. For all the case studies, the networks 

and the methods used to develop them are described in detail, which will facilitate the application of similar 

approaches in other areas.   
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2. Introduction 

Human well-being depends on a wide range of benefits and services provided by ecosystems, from carbon 

sequestration, protection from natural hazards, production of food and materials, to cultural services such as 

recreation and wildlife observation. The assessment of these ecosystem services (ES) and the trade-offs between 

them has been recognized as an important tool for conservation, ecosystem management, and spatial planning. 

However, modelling and mapping ES is often challenging, as it requires combining information on the state of the 

ecosystem, its functions, and the socio-economic demand for ES. For these different components, information may 

be available in different forms, including Earth Observation data, in-situ measurements, process-based models, and 

expert or stakeholder knowledge.  

Bayesian networks (BNs) are a powerful tool to represent complex socio-ecological systems, as they can take into 

account both qualitative and quantitative data, while the associated uncertainties are explicitly shown and 

propagated through the network. Furthermore, relationships between variables in the BN are represented 

graphically, creating a transparent model structure that can facilitate communication with stakeholders. Because 

of these advantages, BNs have been used to support management decisions on watersheds (Ames et al. 2005, 

Bromley 2005), marine landscapes (Stelzenmüller et al. 2010), agriculture (Kleemann et al. 2017) and conservation 

(Newton et al. 2007). Other uses include environmental impact assessments (Marcot et al. 2001), habitat suitability 

modelling (Hamilton et al. 2015), risk assessment (Grêt-Regamey and Straub 2006), and land use change modelling 

(Celio et al. 2014). Increasingly, BNs are also being used to model ecosystem services (Pérez-Miñana 2016). 

In this manual, we present guidelines and examples of how to model and map ES using Bayesian Networks. First, 

we describe the methods used to develop BNs, with practical examples. Then, we present an online platform 

(gbay.ethz.ch), where BNs can be linked with spatial data, and a set of example networks that can be used for 

learning. Finally, a set of case studies illustrate the use of BNs to address a variety of questions related to ecosystem 

services. 

This Deliverable is closely linked to other work packages within the ECOPOTENTIAL project. Spatial Bayesian 

Networks of ecosystem services can integrate Earth Observation products, such as those developed in WP4, 

process-based and empirical models (WP6; see Section 6.1), as well as future scenarios (WP8). By addressing trade-

offs between ES and other questions relevant to management, and by involving stakeholders in the BN modelling 

process (e.g. in the Doñana PA, see Section 6.3), we can produce results that address the needs of PA managers 

and decision-makers (WPs 11 and 9).  

The gBay platform for spatial BNs is currently password-protected and available only to ECOPOTENTIAL partners, 

while in the current test phase. After publication (estimated in summer 2019), the platform will be openly available 

to all non-commercial users, and the underlying code will be published on GitHub. A link to the platform will then 

also be provided on the Virtual Laboratory Platform (WP10). The platform is accompanied by a Wiki 

(wiki.gbay.ethz.ch), where the contents of this Deliverable (instructions on how to develop BNs and how to use 

gBay, examples, and case studies) will be published, along with tutorials, example networks and data. Through the 

intuitive graphical user interface (GUI) of gBay and the material published on the Wiki, we aim to make spatial BNs 

an accessible tool, where users (including non-academic users, such as park managers – link to WP12) can learn 

how to use spatial BNs to address relevant questions in their socio-ecological systems.  
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3. Developing a Bayesian Network  

A Bayesian Network is a directed, acyclic graph with an underlying joint probability distribution. It therefore consists 

of three parts: 

1. A set of nodes representing variables, each with a set of mutually exclusive (discrete or continuous) states.  

2. A set of links representing the (directed) causal relationships or dependencies between these nodes. 

3. A set of probabilities specifying the belief that a node X will be in a particular state for each combination 

of its parent nodes’ Pa(X) states (conditional probability tables - CPTs). 

4.  

Once the BN is compiled (completed, with all the CPTs filled), we “run” it by adding evidence to one or more nodes, 

which is propagated through the network and the joint probability distribution is updated. This calculation is called 

inference, and it is performed by applying Bayes’ theorem:  

P(X) = ∑Pa(X)P(X|Pa(X)) * P(Pa(X)).  

Evidence can be data (e.g. when we know the type of land cover in a pixel) or scenarios (e.g. when we explore what 

happens in the system when we increase the harvesting rate). When we know the state of a node with 100% 

certainty, this is called hard evidence (the land cover is a forest), while soft evidence contains some uncertainty 

and is in the form of a probability distribution (the land cover is a forest with 70% probability and a grassland with 

30% probability).  

In the following, we describe the procedure to develop a Bayesian Network to model ecosystem services.   
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Figure 3.1-1: Example of a Bayesian Network that describes the ecosystem service of recreation. The CPT of node "Landscape 

attractiveness" is shown, as well as how the probability distribution of this node is updated when we add evidence to its 

parent nodes. For more details on this network, see section 5.2. 

3.1 Model purpose and context 

Before the construction of the BN begins, it is important to clarify the problem and objectives, as well as the 

modelling context:  

- What is the main question to be addressed with the model? What are the “target nodes” – the main variables 

of interest, e.g. the focal ecosystem services? 

- What are the key drivers that affect the focal ecosystems? 

- How will the model be used? BNs can be used to improve system understanding, for scenario or trade-off 

analysis, to support and inform management, to understand uncertainties, or for several of these purposes.  

The complexity of the model and the methods used to construct it should be adapted to its aim and target 

audience. For example, a simpler BN is more suited to communicate with stakeholders, while a more complex 
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model may help integrate various data and models, to produce more accurate ES maps. Furthermore, if a BN 

is aimed at communicating with stakeholders or managers, these should be involved in the development of 

the network and agree with its purpose (see example of collaborative modelling in the Doñana PA).  

- What is the appropriate spatial scale and extent to address the question? 

- Should the model be dynamic, i.e. take into account multiple time steps? If so, what is the appropriate 

temporal resolution? 

3.2 Bayesian Network software 

A variety of Bayesian Network software packages is available, such as Hugin, AgenaRisk, Genie, OpenBUGS, and 

various R packages. In this manual, we demonstrate how to create a BN in Netica, the BN software most commonly 

used in ecosystem service modelling. A free test version of Netica (with a limit of 15 nodes per network) can be 

downloaded at http://www.norsys.com/, and an extensive web help is available at: 

https://www.norsys.com/WebHelp/NETICA.htm#NETICA/X_Glossary_AE.htm  

However, many functionalities are also available in other software packages. For an overview, see review by Pérez-

Miñana (2016). 

In order to map ES, we link BNs to spatial data using a specialized online application (gBay.ethz.ch) developed at 

ETH-PLUS within the framework of the ECOPOTENTIAL project.  

3.3 Defining the nodes 

Once the purpose and context of the BN are defined, we select the variables that should be represented as nodes 

in the network in order to address the question. The BN can include the following sets of variables:  

- Focal ecosystem services as target nodes 

- Ecosystem properties (structure and processes) that influence the provision of these services  

- Controlling factors that affect the relevant ecosystem properties (drivers, pressures)  

- Variables describing the demand for the ecosystem service 

- Management interventions and scenarios  

- Proxies and indicators for variables that cannot be directly assessed, including remote sensing variables 

The relevant variables in the system can be defined by experts, from literature, or through stakeholder workshops.  

3.3.1 With experts or stakeholders  

A good way to find a set of relevant influence factors is a workshop with experts or stakeholders. Before the 

workshop, a list of relevant factors can be compiled based on literature or expert interviews. At the workshop, the 

participants individually rank the importance of the individual factors. Then, the ranking is discussed to find a 

consensus about a set of most relevant influence factors (Celio et al. 2014). For more details on setting up a BN 

with experts or stakeholders, see Cain (2001), Celio et al. (2014), and Salliou et al. (2017).  

Workshops with stakeholders and experts were used to develop a BN model of land use change in the Sierra 

Nevada, and to model ecosystem services in Doñana. 

http://www.norsys.com/
https://www.norsys.com/WebHelp/NETICA.htm#NETICA/X_Glossary_AE.htm
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3.3.2 Creating nodes in Netica 

To create a node in Netica, click on the  icon and then place the new node somewhere on the canvas. Double 

click on the node to open a window with the node properties, where you can change the node name and define it 

as discrete or continuous.  

3.4 Designing the network 

In the next step, the relationships between the nodes are included as directed links in the network. The links 

represent causal relationships, not to be mistaken with the flow of information. For example, an EO product such 

as a land cover classification is an input node to the network, as it provides information about the actual land cover. 

However, in terms of causality, the classification depends on the actual state, not vice versa, so the link should be 

directed from the land cover to the classification. Defining links based on causality maintains the logical structure 

of the network. However, it is not always easy to define causality, and sometimes a pragmatic approach is 

necessary, where links are defined in a way that facilitates the construction of CPTs.  

During this step, we follow the following guidelines:  

- Nodes with no parents should represent the state of the ecosystem, driving factors, or management 

interventions. 

- Nodes with no children should be the ES of interest or additional impacts (these only if their inclusion is 

relevant to the modelled problem). 

- If possible, there should not be more than three parents for each child node (the size of a CPT grows 

exponentially with the number of parents).  

- Feedback loops are not allowed in BNs. In case of a feedback effect, consider which direction of impact is 

more relevant for the modelling purpose and within the temporal and spatial scale of interest. The 

alternative is to use a dynamic BN, consisting of several BNs at different time steps (see section on dynamic 

BNs).  

The resulting network should be reviewed by other experts, and (if aimed for communication and management) 

by the relevant stakeholders. During the process, it is often necessary to return to the previous step and define new 

nodes or redefine existing nodes.  

3.4.1 Defining links with stakeholders or experts 

One approach to define the causal links between nodes is using an influence matrix, where experts (or stakeholders) 

are presented with a matrix based on the list of nodes that they previously agreed on. Then, they are asked to 

assess the influence of each node on every other node in the network (Celio et al. 2014). This can be done in a 

workshop or via an (online) questionnaire. The influence matrix can be translated into causal links in the network, 

which should then be discussed with the experts. As a first step to construct a network, it is necessary, to construct 

the casualties of all driving factors. Because there is no natural scale for judging direct impact strength, the scale 

has to be determined, e.g. a 5-point-scale. A problem that might appear is the high amount of impacts. To deal with 

this phenomenon, the calculation of standard statistics (mean, median, variance) are helpful to show the degree of 

heterogeneity and to aggregate the experts impact estimations. Based on this a preliminary network can be 

constructed to be discussed with the experts.  
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3.4.2 Creating links in Netica 

To create a link between two nodes in Netica, click on the  icon in the toolbar. Then click on the parent node 

and drag the arrow to its child node.  

3.5 Defining the variable states 

For every node in the network, we define whether they should be described as discrete (states are categories, such 

as land cover) or continuous (e.g. biomass) variables. For discrete variables, a finite set of mutually exclusive states 

should be defined. The number of states exponentially increases the complexity of the CPTs, and should therefore 

be kept to a minimum that still represents the states relevant for the system. Continuous variables need to be 

discretized into intervals, where the number of intervals should be as low as possible, while accounting for any 

important thresholds and maintaining the shape of the probability distribution.  

3.5.1 Defining node states in Netica 

To modify the states of a node in Netica, double click on the node to open the node properties window. Click on 

“Description” and select “States”. Then, simply enter the names of the states in the box below. For continuous 

nodes, the states are defined through discretization intervals. Select “Discretization” and enter the threshold values 

between the states.  

 

Figure 3.5-1: Defining states for discrete and continuous nodes in Netica. 

3.6 Filling the CPTs 

The links between nodes in a BN are represented by conditional probability tables, where a probability distribution 

of a child node is defined for every combination of states of its parent nodes. Depending on the availability of data 

or models, various methods can be used to populate CPTs, from expert elicitation to “learning” from data. During 

this process, we may find it necessary to return to previous steps and redefine the nodes, their states, or the links 

between them. 
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In Netica, the CPTs can be filled either manually (right click on the node -> Table) or through equations. To use an 

equation, open the node properties, select Equation, and enter the equation in the box. Then, click on  to 

calculate the CPT based on the equation.  

 

Figure 3.6-1: Examples of a deterministic (left) and probabilistic (right) equation in Netica. 

3.6.1 With experts or stakeholders 

When data is lacking, the CPTs can be filled manually by experts or by stakeholders. Usually, this means that the 

experts should specify the probability of each state of the child node given each combination of parent nodes. 

When a node has many parents with several states, many rows of CPTs need to be filled, which can lead to fatigue 

and boredom, and it is difficult to ensure consistent distributions (Das 2004). This is why it is important to limit the 

number of parents, and the number of node states.  

When node states are binary or ordered, this problem can be reduced by using various interpolation methods (Cain 

2001, Das 2004). For example, if a child node C has three states (“low”, “medium”, “high”), and three parents Pa 

with the same three states, we can elicit three probability distributions of C: where all three parents are in state 

“high”, all in state “medium”, and all in state “low”. In addition, we need the relative weights of each parents (w1, 

w2, w3, which should sum up to one). Then, all the other rows of the CPT can be calculated by interpolation.  
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Table 3.6-1: Example of interpolation in a CPT, where the weights of the parents are w1 = 0.17, w2 = 0.5, w3 = 0.33. Elicited 

probabilities are shown in bold, while all other probabilities in the table are calculated using interpolation, as shown below. 

Parent nodes Child node probabilities [%] 

Parent 1 Parent 2 Parent 3 High Medium Low 

High High High 95 5 0 

High High Med = 95*w1 + 95*w2 + 

10*w3 = 66.7 

= 5*w1 + 5*w2 + 

80*w3 = 30 

= 0*w1 + 0*w2 + 

10*w3 = 3.3 

… … … … … … 

Med Med Med 10 80 10 

… … … … … … 

Low Med Low  = 0*w1 + 10*w2 + 

0*w3 = 5 

= 5*w1 + 80*w2 + 

5*w3 = 42.5 

= 95*w1 + 10*w2 + 

95*w3 = 52.5 

Low  Low Low 0 5 95 

 

Distributions of continuous variables can also be elicited from experts. One useful approach is the four-point 

estimation method (Speirs-Bridge et al. 2010), where we ask experts for the expected value of the node for a specific 

combination of parents, the expected upper and lower bounds of possible values, and their confidence in their 

estimate. Using this information, we can estimate a probability distribution (e.g. a normal or triangular distribution). 

An example of this approach is available in the avalanche protection case study.  

In some cases, experts find it easier to deal with categories rather than continuous variables, and it may be useful 

to translate continuous nodes to discrete classes using fuzzy logic. 

When using expert elicitation, more than one expert should be involved whenever possible. Then, we can evaluate 

the differences between the experts, and test the sensitivity of the network to these differences. This may be 

particularly interesting when developing a network with different stakeholder groups. For a final network, the CPTs 

are usually combined by averaging the values from different experts. 

Some stakeholders may find it difficult to estimate probabilities. In this case, surveys should be designed in a way 

that is understandable and easy to fill out. In order to understand farmers’ decisions in the Sierra Nevada, a choice 

experiment was used.  

3.6.2 Linking remote sensing proxies to the state of the ecosystem 

To map ecosystem services, proxies of ecosystem structure are often derived from remote sensing (e.g. land cover 

classifications or LiDAR-based measurements of vegetation cover). However, these remote sensing products often 

include some uncertainty due to measurement errors or misclassifications.  To make these uncertainties explicit, 

we can create separate nodes representing the observed value and the actual state of the variable. The observation 

is caused by the actual state, not vice-versa, and defining the structure of the network based on this causality helps 

to define conditional probabilities (see avalanche protection case study). 
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3.6.3 From existing empirical models 

Often, some parts of the network have already been extensively researched and empirical or process-based models 

are available in literature. In this case, the model can be incorporated in the BN in the form of probabilistic 

equations. This usually means that the probability distribution of the child node is a normal distribution, where the 

mean is a function of its parents, and the standard deviation is derived from the reported uncertainty in the model. 

Other types of distributions can also be used. 

For an example of how an empirical model can be incorporated in a BN, see the avalanche protection case study.  

3.6.4 Learning from data or simulations  

Where sufficient data is available, CPTs can be “learned” directly from data within a BN software. Learning a CPT 

requires a dataset of cases with information on the child node and its parents. Various algorithms (e.g. Expectation 

Maximisation or gradient descent) can be used to find the maximum likelihood BN, which is the network that is 

most likely given the data. This approach can also be used to translate process-based simulation models into the 

BN. We run the simulation over the range of input values, and use the results as cases for learning the BN. 

Parameters that are not included in the network should also be varied in the simulation, in order to capture the 

uncertainty in the model. 

To “learn” from data in Netica, create a text file where the column names match the names of the nodes in the 

network, and rows represent cases (i.e. observations, plots, measurements). Go to Cases -> Learn -> Incorp Case 

File (to derive CPTs by simply counting the cases) or Learn Using EM (to use the expectation maximisation 

algorithm, e.g. in case of missing data). To use learning only for the CPT of one node, select the node before 

performing the learning.  

Learning from simulations was used to populate one of the nodes in the avalanche protection network, while in-

situ data were used to quantify some nodes in the BN of ecosystem services in the Wadden Sea. 

3.7 Testing, evaluating, and updating the BN 

Once all the CPTs in the BN are filled, the network can be compiled. Then, it can be tested by entering “evidence” 

(modifying the probability of a node, e.g. setting the probability of a specific state to 100%). The evidence is 

propagated through the network by inference, and we can observe the resulting probabilities in other nodes. The 

BN and its behaviour under different scenarios should be presented to experts and stakeholders, and evaluated by 

them. Afterwards, their feedback is used to adjust the structure of the network, the states of the variables, or to 

update the CPTs.  

3.7.1 Sensitivity analysis  

Sensitivity analysis is a useful tool that determines the influence of individual variables on the outputs, which can 

help us decide where more data is necessary. When new data becomes available, it can be used to update the 

conditional probability distributions in an iterative process. 

In Bayesian Network modelling, sensitivity analysis is often used to evaluate the influence of variables in the 

modelled system on the posterior probability distribution of a node of interest (Uusitalo 2007, Marcot 2012). 

Sensitivity to findings can be measured by the reduction in uncertainty (e.g. entropy or variance) in the target node 
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due to a finding on another node. Entropy reduction is expressed by the measure of mutual information (Kjaerulff 

and Madsen 2013): 

𝐼(𝑋, 𝑌)  =  𝐻(𝑋)  −  𝐻(𝑋|𝑌)  =  𝐻(𝑌)  −  𝐻(𝑋|𝑌) =  ∑

𝑌

𝑃(𝑌) ∑

𝑋

𝑃(𝑌) 
𝑃(𝑋, 𝑌)

𝑃(𝑋)𝑃(𝑌)
  

where H(X) is the entropy of X and H(X|Y) is the entropy of X after a new finding on Y. 

The analysis of sensitivity to findings gives us an indication of which variables in the system have the highest 

influence on the outcome of the model. 

To perform sensitivity analysis in Netica, select the node whose sensitivity you want to measure. Then, go to 

Network -> Sensitivity to findings, and you will get a table showing the sensitivity metrics (mutual information, 

relative mutual information, variance of beliefs, and, for continuous nodes, variance reduction).  

Sensitivity analysis can be used to map the flow of information in a Bayesian Network and analyse uncertainties 

(see Section 6.1.4).  

3.7.2 Scenario testing with experts or stakeholders 

When co-constructing a BN with experts or stakeholders, it is important that they are presented with the results of 

the process, and can validate them. In a workshop setting, the participants can input scenarios in the network, see 

the results, and evaluate whether these agree with their understanding of the system (Celio et al. 2014). 
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4. Spatial BNs with gBay 

Mapping ecosystem services requires running the BNs in a spatially explicit way. Within ECOPOTENTIAL, we have 

developed a toolbox that links BNs to spatial (raster or vector) data. For each pixel (or polygon), the values in the 

input data are used as evidence in the network, and inference is performed to obtain the posterior probability 

distribution of the target nodes. Then, the posterior distributions of the target nodes are written into a new spatial 

file. 

 

4.1 Upload a Bayesian Network  

In the first step, the BN we want to run should be uploaded in the .dne format (as created in Netica or another BN 

software). This is done by using “choose file” and selecting the network file, or dragging and dropping the network 

file into the application. Then, we click “Proceed”.  

Once a network has been uploaded, it is visualized in the GUI, displaying the nodes with their states (in case of 

continuous nodes, the upper bound of each interval is displayed), and the links between them. The nodes can be 

moved around.  

4.2 Configure the run 

4.2.1 Select target nodes 

When hovering with your mouse above a node, additional options appear. A node can be selected as a target node, 

which means that the output of running the network will contain the posterior probability distribution of this node. 

When we select a node as a target node, a target icon will appear in its upper right corner.  

You may want to save the configuration of the run (including the information about which are the target nodes, 

etc.), in case you will run it again later. You can also upload a previously saved configuration.  

4.2.2 Set non-spatial evidence 

By clicking on the state of a node, we set that state as hard evidence, which is then shown in bold. This is useful for 

non-spatial evidences, for nodes which have the same state over the whole study area, such as an agricultural 

policy.  

4.3 Spatial inputs 

4.3.1 Raster 

In the raster mode of gBay, the input data as well as outputs are in raster (.tif) format. The input rasters correspond 

to nodes that we have data on. We can upload input rasters by simply dragging the .tif file from our file explorer to 

the corresponding node in gBay. When data is added to a node, the colour of the node changes, and the name of 

the .tif file is displayed.  

The input rasters should all have the same extent, cell size, and spatial reference (coordinate system). 
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When the input data represents hard evidence (we know the state of the node at each pixel, with 100% certainty, 

e.g. we know that the land cover of a pixel is forest), then the input raster has one band, where the value of each 

pixel corresponds to the number of a state of the node. For continuous nodes, the value of the pixel represents the 

real value (e.g. forest cover of 75%).  

When we use soft evidence (a probability distribution for each pixel), the input raster should have as many bands 

as the number of states of the corresponding node. Each band represents the probability of a state (e.g. the 

probability that the land cover of a pixel is forest). The values of all bands should sum up to 100.  

4.3.2 Vector 

When using vector data (.shp files or ESRI geodatabase files), the input nodes are represented in the attribute table 

of the dataset. For hard evidence, the attribute table should have a column corresponding to the name of the input 

node, with values corresponding to the states of the node.  

For soft evidence, each state of the input node should be represented by a column of the attribute table, with 

values representing the probabilities of the states (which should sum up to 100). The column names should be the 

node name, followed by two underscores, an 's' (from state) and the number of the state. For example, to set soft 

evidence on node 'lu_t0', with three states, the attribute table should contain the columns: lu_t0__s1, lu_t0__s2, 

lu_t0__s3 

The vector file can be added to the network by dragging it to the box labelled “Vector file”.  

Please note that gBay does not modify the geometry of the vector file, but simply performs inference on each 

object, using information from the attribute table.  

4.4 Run the network 

Once you have set up the network, selected the target nodes, and uploaded the spatial inputs, you can click on 

“Run” to run the network. gBay will use your spatial data to perform inference in the BN for each pixel or object, 

and produce an output of the results.  

Any potential errors or warnings will appear as pop-ups. If you want to see the progress of the processing, select 

the option to “Show console”.  

If you have a complex network and are running it with a large spatial dataset, this may take some time. In this case, 

you should enter your email address, where you will receive a notification when the process is completed, along 

with a link where you can download the data.  
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Figure 4.4-1: The gBay interface set up to run a BN to map carbon sequestration and storage (for details on the network, see 

Section 5.1) 

4.5 Outputs 

4.5.1 Raster 

The output of a gBay run is a posterior probability distribution raster of each target node (named target_node.tif). 

This raster has one band for each state of the target node, where the value represents the probability of the state. 

In addition, the last band of the raster represents the most probable state.  

In addition, for each target node, some metrics of the posterior probability are calculated and stored in an additional 

raster file called target_node_stats.tif. For discrete target nodes, this file contains one band with Shannon’s 

evenness index of the posterior probability distribution: 

J = H/Hmax, where H = ∑ 𝑝𝑖
𝑁
𝑖=1 ⋅ 𝑙𝑜𝑔2𝑝𝑖 , Hmax = log2(N), pi is the probability of state i and N is the number of states.  

The index is a standardized measure of entropy (can be compared between nodes with different numbers of 

states) and expresses uncertainty. It has values between 0 and 1, where 1 denotes a uniform distribution 

between all possible states (maximum uncertainty), and 0 denotes complete certainty that the output node is in a 

specific state.  

If the target node is continuous, the stats output contains six bands with the following values: 

  1.Evenness index 

  2. Mean 

  3. Median 

  4. Standard deviation  
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4.5.2 Vector 

In vector mode, the gBay output is a vector file, where the geometry corresponds to the input geometry, and the 

attribute table contains the posterior probability distribution of the target nodes, with a column for each state, and 

an additional column with the most probable state.  

 

Table 4.5-1: Overview of spatial inputs and ouptuts in gBay 

 Input format Input values Output 

R
as

te
r .tif file per input 

node 

Hard evidence: 

Value = node state (discrete nodes) 

or continuous value (continuous 

nodes) 

target.tif:  

one band per state:  

value = probability of state 

additional last band:  

value = most likely state 

target_stats.tif: bands: 

1. Evenness index  

Only for continuous nodes:  

2. Mean 

3. Median 

4. Standard deviation 

Soft evidence: 

One band per state 

value = probability of state 

V
ec

to
r 

one .shp file or 

geodatabase 

.gdb (reads the 

attribute table) 

Hard evidence: 

Column of attribute table with same 

name as input node 

value = node state (discrete nodes) or 

continuous value (continuous nodes) 

Same geometry as input 

attribute table with a column for 

each state of the target node: 

value = probability of state 

additional column:  

value = most likely state 

 

Soft evidence: 

Columns with node name and state 

number  

(lu_t0__s1, lu_t0__s2, lu_t0__s3):  

value = probability of state 
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4.6 Dynamic BNs 

Bayesian Networks usually represent a static state of the studied system, and feedback loops cannot be 

incorporated. To take into account changes over time, including feedbacks, we can use dynamic BNs, using the so-

called “time-slicing” approach. In practice, this means that each time step is represented by a run of the network, 

where the outputs of one step are used as inputs to the next time step.  

For example, when modelling carbon storage over time, we start with an estimate of the forest biomass at the 

beginning of the first time step (Biomass). During one time step, growth and harvesting take place, and through 

inference we obtain the probability distribution of land use after the first time step (Biomass1, e.g. after 10 years). 

This Biomass1 then becomes the input for Biomass in the second time step.  

In gBay, we create such a dynamic BN by specifying links across time steps. To do this, click the option “Link” on the 

output node that should feed into the input of the next time step (Biomass1). An orange arrow will appear, which 

should be connected to the corresponding input node (Biomass).  

 

 

Figure 4.6-1: Using gBay to run a BN dynamically (over multiple time steps). For details on the network, see Section 5.1 

Dynamic BNs are used to model scenarios of land use change in the Sierra Nevada, and to understand the 

cumulative effects of pressures on mussels in the Wadden Sea.  
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4.7 Accounting for spatial interactions 

Spatial interactions, such as neighbourhood effects, are often important in socio-ecological systems. In gBay, we 

can account for spatial interactions using the Intermediate processing module. Here, we can upload python scripts 

that process available data on the nodes (either input data or outputs of the previous time step) and modify 

evidences according to some rules. Some examples are provided, including:  

- Changing evidences over time (e.g. modifying the evidence on a node describing agricultural policy, which 

changes between different time steps). 

- Implementing boundary conditions (e.g. limiting the number of pixels that can change from “forest” to 

“agriculture” under a specific land use change scenario). 

- Calculating neighbourhood values (e.g. calculating the percentage of forest cover in neighbouring pixels 

within a specified distance).  

To use the intermediate processing module, modify one of the available scripts with your parameters (such as 

neighbourhood distance) or upload your own. In addition, specify which nodes’ data should be used for the 

calculation by hovering over the node and selecting the option “Python”.  
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5. Example Bayesian Networks 

In the following, we present three examples of Bayesian Networks for modelling ecosystem services. The networks 

and some associated data can be downloaded (at https://wiki.gbay.ethz.ch/doku.php?id=examples) and used to 

get familiar with Netica and gBay. They are based on real ecosystems in the Swiss Alps, but are simplified, and need 

to be adapted with own data and/or knowledge in order to apply them elsewhere.  

5.1 Carbon storage and timber production 

In order to model carbon sequestration, storage, and wood production in mountain forests, we use two remote 

sensing products, a land cover classification and a LiDAR-based canopy height model (CHM). The CHM is linked 

closely related to the total biomass of a forest stand. From one time step to the next, the forest biomass changes 

due to growth and harvesting, and this change accounts for most of the net carbon sequestration in mountain 

ecosystems. Forest inventory data (learning_biomass.txt), which contains information about tree height, stand 

biomass, growth and harvest rates per plot, is used to “learn” the CPTs of these nodes.  

To calculate total carbon storage, probability distributions of soil carbon for the different land cover types from 

literature are added to the aboveground biomass carbon.  

The demand for wood production depends on wood prices, as well as harvesting costs, which are related to 

topography (slope) and accessibility (distance to roads). 

This model can be run dynamically, over multiple time steps. The biomass at the end of one time step (Biomass t1) 

can be used as an input on Biomass t0 in the next time step.  

 

 

Figure 5.1-1: A Bayesian Network that models carbon storage, sequestration, and wood production in a mountain region 

https://wiki.gbay.ethz.ch/doku.php?id=examples
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5.2 Recreation 

The value of recreation in a landscape depends on its natural potential (i.e., the attractiveness of the landscape), as 

well as the its accessibility and the overall level of demand (e.g. the number of visitors in the region). In this network, 

we combine three factors that were defined by local stakeholders in the mountain region as important for 

landscape attractiveness: the topographic variability (heterogeneous terrain with prominent peaks), remoteness, 

and probability of observing wildlife. 

On the other side, the demand for recreation occurs in accessible areas (on hiking paths or near roads) and is higher 

when the number of visitors is high.   

 

Figure 5.2-1: Bayesian Network describing the recreation ecosystem service in a mountain region. 
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5.3 Habitat suitability 

The model describes the habitat suitability for a grouse species in the Alps. The grouse mainly live in montane, not-

too-dense conifer forests (with 40-70% tree cover), where there is enough light for understory vegetation such as 

blueberries. Large forest areas are more suitable than small patches, so the model takes into account nearby pixels 

within a 500 m distance. Since the birds are sensitive to human disturbance, the distance from infrastructure is also 

an important factor.  

For each continuous factor, we first define the thresholds to discretize the nodes. Then, we create additional nodes 

describing the suitability of each individual factor. Since all the factors need to be suitable in order to have a suitable 

habitat for grouse, the conditional probability of “habitat suitable” is defined as a Noisy-AND distribution of all its 

parents. In Netica, we write this using an equation:  

p (Habitat | Forest_cover_suit, Forest_cover_500suit, Distance_suit, Elevation_suit) =  

NoisyAndDist(Habitat, pinh, Forest_cover_suit, p1, Forest_cover_500suit, p2, Distance_suit, p3, Elevation_suit, p4)  

Where pinh is the probability that the habitat is not suitable even if all the individual factors are suitable, and p1-4  

are the probabilities that each factor will be required for the habitat to be suitable. 

 

Figure 5.3-1: Bayesian Network describing the habitat suitability for grouse in a mountain region. 
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6. Case studies 

6.1 Avalanche protection in Davos, Switzerland 

Authors: Ana Stritih, Peter Bebi, Adrienne Grêt-Regamey 

Protection from natural hazards such as avalanches is one of the most important ecosystem services provided by 

mountain forests. Forests decrease the probability of an avalanche release (Bebi et al. 2009), and reduce the mass 

and velocity of avalanches that flow through them (Feistl et al. 2014). The capacity of forests to provide avalanche 

protection depends on other side on their structure and species composition, which can be derived from EO data. 

On the other side, the demand for avalanche protection depends on the risk to human life and infrastructure, which 

can also be mapped using remote sensing. While data and models exist for some components of the avalanche 

protection system, they have not been integrated into a comprehensive model of the ecosystem service, and are 

associated with large uncertainties. We address this issue by developing a BN, which integrates existing models, EO 

data, and expert knowledge. The BN is used to more precisely map the ecosystem service and quantify the 

associated uncertainties (Stritih et al. 2019). 

6.1.1 Developing the Bayesian Network   

We based our avalanche protection model on previous models developed for this ES (Grêt-Regamey and Straub 

2006, Grêt-Regamey et al. 2013) but extended it to incorporate newly available remote sensing inputs as well as 

recent developments in modelling forest-avalanche interactions. The BN structure was developed through an 

iterative process of literature review, consultation with experts, and testing the behaviour of the network with 

different input values.  

The input nodes of the network are remote sensing variables, which are proxies for ecosystem structure, and in-

situ or modelled avalanche data. These are linked to nodes that describe the natural hazard process, ecosystem 

functions, and demand for avalanche protection (based on a risk assessment approach).  
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Figure 6.1-1: Bayesian Network developed to model the ES of avalanche protection. The nodes are grouped and coloured 

based on the types of variables they represent. Spatial inputs are remote sensing and avalanche data, which are linked to 

variables describing ecosystem structure, avalanche hazard processes, ecosystem functions, and risk factors. The outputs of 

the network are the provision and demand for avalanche protection. Arrows represent causalities, not the flow of 

information, and are therefore oriented from ecosystem structure variables to the corresponding remote sensing inputs. 

Adapted from (Stritih et al., 2019). 

6.1.2 Quantifying the network (CPTs) 

In order to integrate different types of information (including remote sensing, process-based models, empirical 

models, and expert knowledge) and account for the associated uncertainties, we used a variety of methods to 

quantify the links between nodes in the network.  

6.1.2.1 Links between remote sensing proxies and the actual state of the ecosystem 

Remote sensing products (e.g. land cover classifications or LiDAR-based measurements of vegetation cover) 

represent a proxy of the actual state of the ecosystem. We make the uncertainty in the measurements or 

classifications explicit by creating separate nodes representing the observed value (Y) and the actual state (X) of 

the variable. The observation is caused by the actual state, not vice-versa, and defining the structure of the network 

based on this causality helps to define conditional probabilities.  

We used this principle to account for uncertainties in the land cover classification. Classification errors are 

commonly expressed in confusion matrices, which contain counts of predicted classes for objects where the true 

class is known (in our case, obtained from 110 ground truth locations), with rows representing the classes in reality 

(c), and columns representing the classes predicted by the classification (c’). Based on these counts, we can 

calculate either backward probabilities P(X = c | Y = c’) (e.g. the probability that a patch classified as forest is a forest 

in reality); or the forward probabilities P(Y = c’ | X = c) (that a forest patch will be classified as forest). The backward 

probabilities depend on the prior distribution of land cover – if we sample ground truth locations in a densely 

forested landscape, it is likely that many of the patches classified as forest will in fact be forested, leading to a higher 



D7.3 Ecosystem service mapping with Bayesian Networks – a manual   

 

  

  Page 30 of 71 

 

Co-funded by the  
European Union 

ECOPOTENTIAL – SC5-16-2014- N.641762 

backward probability than if we sample in a sparsely vegetated area. On the other hand, forward probabilities are 

inherent to the error process in the remote sensing data and the classification algorithm (Cripps et al. 2009), and 

are therefore consistent over the whole area. Therefore, we define the classification node Y as the child of the 

actual class X, and the rows of its CPT then correspond to the forward probabilities P(Y | X). 

 

Figure 6.1-2: Confusion matrix of the land cover classification (a), the resulting CPT (b), and the resulting probability 

distribution when a pixel is classified as evergreen forest (c). 

For continuous remote sensing variables (such as the percentage of crown cover) with a known measurement error 

rate, we similarly define the measured cover Y as a child of the actual cover X.  Assuming a normal distribution of 

errors, we define the conditional probability of Y as a normal distribution p(Y|X = x) = N(x, σ2) where the mean is 

the value of the actual state (x), and the standard deviation σ is defined by the measurement error. If we have no 

prior information about the actual state of X, a finding on the child Y (measurement) node then results in a normal 

distribution p(X|Y = y) = N(y, σ2) of the parent X (actual state). 

Since the error of lidar-based crown cover measurements was estimated to be 12 %, the CPT for lidar-measured 

crown was defined in Netica using the equation:  

p(Crown_cover_Lidar | Crown_cover) = NormalDist(Crown_cover_Lidar, Crown_cover, 0.12*Crown_cover) 
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6.1.2.2 Learning from process-based models 

The process-based avalanche model RAMMS (Christen et al. 2010) simulates avalanche flows and also snow 

detrainment in forests during avalanches. In order to quantify the CPT of the node “Detrainment”, we simulated 

five known avalanche events in RAMMS with varying input parameters (e.g. different snow heights and parameters 

of snow erodibility, to account for uncertainty in the model). Then, we used the outputs of the simulations to “learn” 

the CPT of “Detrainment”, using the Expectation Maximisation algorithm in Netica.  

6.1.2.3 Incorporating empirical models 

Information on forests’ potential to prevent avalanches was available in the form of an empirical logistic model 

(Bebi et al. 2001). We included this model into the network using a Netica equation, including the model parameter 

uncertainty by incorporating the parameters not as single values, but as nodes with their probability distribution 

(normal distributions defined by the parameter estimates B and their standard errors). Then, we calculate the CPT 

of “Potential prevention” with an equation:  

p (Potential_prevention | Slope, Gap_width, Crown_cover, Prevention_intercept, cover_B, 

slope_B, gap_B) = 1 - (logistic ((Prevention_intercept) + cover_B * Crown_cover + gap_B * Gap_width + slope_B 

* Slope)) 

However, this procedure results in a very large CPT for the node (a line for each combination of parameters and 

predictor variables). Since the parameter nodes will not be modified with evidence, we can reduce the CPT by using 

the function “Absorb nodes”, which removes the nodes from the network, but retains the associated information 

in the reduced CPT.  

Figure 6.1-3: Distribution of actual crown cover, given a 
measurement of crown cover. The CPT of Crown cover (Lidar) is 
defined as a normal distribution around the actual crown cover. 
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Figure 6.1-4: The parameters of an empirical model can be included explicitly as nodes in the network, to account for model 

uncertainty when calculating the CPT. Then, these nodes can be "absorbed" to reduce the size of the CPT. 

6.1.2.4 Expert knowledge: linking quantitative variables to qualitative categories 

Expert knowledge is often related to qualitative categories rather than quantitative variables. For example, it may 

be easier for an expert to estimate the avalanche protection capacity of forests that are either “open”, “scattered”, 

or “dense”, rather than based on a percentage of crown cover. Linking such categories to numerical values is 

associated with a type of linguistic uncertainty (vagueness), where the delineation between categories is not sharp 

(Regan et al. 2002). Linguistic uncertainty is commonly addressed using fuzzy logic (Zadeh 1965), where 

membership functions m(y) define the level of membership (between 0 and 1) in a specific class for values of y. For 

example, we define trapezoidal membership functions of crown cover (Y) for the classes of forest density (X) (see 

Figure 6.1-5, a). The thresholds between classes have been defined by experts, whereas the slopes of the 

membership functions are defined based on the standard deviation of measured crown cover at locations where 

the forest density was classified in the field (method adapted from (Petrou et al. 2013)). At the expert-defined 

threshold of Y = 70 % crown cover, the probability of the forest being classified as “dense” is 0.5, while a forest with 

100 % crown cover will certainly be classified as “dense” (P(X = dense) = 1). We use the membership function to 

define the probability of the class (X) given an observation y, P(X|Y=y), which is proportional to P(Y|X) * P(X).  



D7.3 Ecosystem service mapping with Bayesian Networks – a manual   

 

  

  Page 33 of 71 

 

Co-funded by the  
European Union 

ECOPOTENTIAL – SC5-16-2014- N.641762 

 

Figure 6.1-5:  An illustration of the use of fuzzy logic to translate quantitative variables to qualitative categories:: a) 

membership functions that define the classes of density based on the percentage of crown cover; b) probability distribution 

of crown cover for the class “dense”, based on the membership function; c) probability of classes when we observe a crown 

cover of 70 %. 

6.1.2.5 Expert knowledge: estimating distributions 

For nodes where no data was available (e.g. “Potential detrainment”), we used expert knowledge to quantify the 

CPT.  To avoid overconfidence, we used the “four-point estimation method” (Speirs-Bridge et al. 2010), where we 

asked the expert to estimate the lowest and highest value they would expect, the most likely value, and their 

confidence that the true value is within this range (Metcalf and Wallace 2013). For example, for a dense evergreen 

forest on rough terrain, the expert estimated the lowest possible detrainment factor to be 24 Pa, the highest 96 Pa, 

and the best estimate at 48 Pa, with a confidence of 80%. This gives us the quantiles and mode of the distribution, 

to which we fitted a simple asymmetric triangular distribution (see Figure 6.1-6).  

 

Figure 6.1-6: Expert-based distribution of potential detrainment for a dense evergreen forest on rough terrain. 
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6.1.3 Spatial application 

The spatial inputs to the avalanche protection BN are remote sensing variables, including a land cover classification 

(derived from a combination of Sentinel2 and aerial LiDAR data) and variables derived from high-resolution aerial 

LiDAR, such as crown cover, terrain roughness, and detected buildings. In addition, modelled avalanche velocities 

under two scenarios, extreme (300-year) and frequent (30-year), provide information on the spatial patterns of the 

avalanche hazard.  

Using raster inputs, we performed inference for each pixel in a 5 m resolution raster of the study area. Since the 

provision and demand for avalanche protection do not occur at the same location, and spatial processes could not 

be modelled in the pixel-based BN, we quantified provision and demand separately. Thus, we obtained posterior 

probability distributions of avalanche protection provision and demand for each pixel. In order to map the outputs, 

we calculated the per-pixel median and entropy (uncertainty) of the posterior probability distributions. 

 

Figure 6.1-7: Modelled provision of avalanche protection in the Dischma valley (5 m resolution). The value is expressed in m 

of snow, while the uncertainty is calculated as the entropy of the posterior probability distribution. Most areas with a high 

value of the service also have a high uncertainty (dark red), as do some forested areas with a predicted low protection value 

(dark blue). Only areas with a zero or very low (light blue) value of the service show a high certainty. From (Stritih et al. 2019). 

6.1.4 Validation and sensitivity analysis 

The model and the resulting maps of avalanche protection provision and demand, as well as the underlying 

ecosystem functions, were presented and discussed with local experts. In addition, we performed a sensitivity 

analysis of the model, using the Netica function “Sensitivity to findings” to calculate the reduction of entropy 

(uncertainty) on the target nodes in response to findings on other nodes in the network. The entropy reduction 
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(also called mutual information) gives us an indication of which variables in the system have the highest influence 

on the ecosystem service.  

We also performed a stepwise sensitivity analysis to visualize the flow of information in the network. For each node 

X, we calculated the proportion of its entropy that can be reduced by a finding on each of its parents. These relative 

mutual information values were used as weights for links between nodes in a Sankey diagram of the network (Figure 

6.1-8)  For each node, the thickness of incoming (from the left) links show how much the entropy on the node can 

be reduced by findings on preceding nodes. Mutual information is not additive, i.e. if both parent nodes can reduce 

the entropy of a child by 50%, this does not mean that findings on both parents will result in complete certainty on 

the child node. Nonetheless, plotting the MI gives an indication of the main sources of uncertainty in the model. 

When the value of MI for all the parents of a node is rather low, this means that the node will have a wide probability 

distribution even when the states of its parents are known, implying high uncertainty in the corresponding links. If 

such a node has a large influence on the outcome of the network, this indicates a knowledge gap.  

 

 

Figure 6.1-8: Stepwise sensitivity analysis of the BN, where the width of a link between two nodes corresponds to the relative 

mutual information (MI %), i.e. the percentage of the entropy on a node that can be reduced by a finding on a preceding 

node. The nodes are labelled and coloured by the type of variable represented (see Fig 6.1-1), while the link colours 

represent the types of uncertainty taken into account while quantifying the link in the BN. From (Stritih et al. 2019).  

Overall, the uncertainties related to avalanche processes contribute more to the final uncertainty in ES provision 

than uncertainties about ecosystem structure. For example, the node “Release” (describing whether a pixel is in a 

potential avalanche release area) has an important influence on subsequent nodes in the network, but findings on 

its parents (“Slope”, “Roughness (measured)” and “Curvature”) can only reduce a small part of its entropy, so it is 

a major source of uncertainty in the model. Some remote sensing inputs have a strong effect on the knowledge 
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about ecosystem structure (“Gap width” and “Crown cover”), while others have higher uncertainty (e.g. 

“Roughness”). There is high uncertainty in land cover classification, as its mutual information with actual land cover 

is only 29 %. However, additional information on actual land cover is gained from the crown cover class (MI = 59 

%). The links from ecosystem structure to the potential provision of ES also contain high uncertainty, regarding both 

the potential of a forest to prevent avalanches (empirical model-based “Potential prevention”) and to stop snow 

during an avalanche (expert-based “Potential detrainment”). However, “Potential detrainment” has a relatively low 

influence on the corresponding ecosystem function (process model-based “Detrainment”). This function is affected 

more strongly by the avalanche process (“Velocity”), which in turn is affected by the natural variability in release 

conditions (“Max new snow height”). 

6.1.5 Description of the network nodes 

Table 6.1-1: Description of nodes in the avalanche protection Bayesian Network, their states, and methods use to quantify 

their conditional probabilities. 

Node Description States CPT method 

Input nodes - remote sensing     

Land cover 

classification 

Random forest classification with 

combination of LiDAR, aerial CIR 

images and Sentinel2 

Evergreen forest, 

deciduous forest, 

non-forest 

Confusion matrix 

Crown cover 

(measured) 

Measured cover of vegetation 

above 3 m 

10 states: 0 - 100 

[%] 

Normal distribution around 

actual state 

Roughness 

(measured) 

Measured terrain roughness, 

derived from LiDAR-based DTM 

(Sappington et al., 2007) 

9 states: 0 - 1 Fuzzy definition of categories 

based on ground truth 

Gap width 

(measured) 

Width (along contour lines) of non-

forested area [m], derived from 

LiDAR-based CHM 

9 states: 0 - 8000 

[m] 

Normal distribution around 

actual state 

Building 

(detected) 

Presence of a building detected 

from LiDAR 

Boolean Confusion matrix 

Curvature Planar slope curvature, derived 

from LiDAR-based DTM 

7 states: -45 - 5   

Slope Slope angle, derived from LiDAR-

based DTM 

8 states: 0 - 90 [°]  

Elevation Elevation [m a.s.l.] 7 states: 1500 - 

2900 

 

Input nodes - avalanche hazard data   

Max new snow 

height 

Annual maximum new snow height, 

which determines the avalanche 

release scenario 

9 states: 0 - 2 [m] Gumbel distribution of 

maximum new snow height, 

Davos, Fluelastrasse 
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Velocity 300 Maximum velocity under the 300 

year scenario, modelled in RAMMS 

9 states: 0 - 60 [m/s]  

Velocity 30 Maximum velocity under the 30 

year scenario, modelled in RAMMS 

10 states: 0 - 60 

[m/s] 

 

Nodes representing ecosystem structure    

Crown cover Cover of vegetation above 3 m 10 states: 0 - 100 

[%] 

Fuzzy logic definition of 

categories 

Crown cover 

(class) 

Category of forest density Dense, scattered, 

open, non-forest 

 

Roughness 

(class) 

Category of terrain roughness Rough, knobby, 

smooth 

 

Land cover Actual land cover class Evergreen forest, 

deciduous forest, 

non-forest 

Based on ground truth plots 

Gap width Width (along contour lines) of non-

forested area [m] 

9 states: 0 - 8000 

[m] 

 

Potential 

release 

prevention 

Potential of forest to prevent an 

avalanche release 

Boolean Logistic mode (Bebi et al., 

2001)l  

Potential 

detrainment 

Capacity of forest to remove snow 

from avalanche flow 

12 states: 0 - 120 

[Pa] 

Expert knowledge (four-point 

estimation) 

Nodes representing the hazard process   

Release Probability of an avalanche release Boolean Fuzzy logic 

Release height Height of snow released in the 

event of an avalanche 

10 states: 0 - 3 [m] Logical combination of 

"Release" and "Max new snow 

height", corrected for "Slope" 

Velocity Maximum avalanche flow velocity 9 states: 0 - 60 [m/s] Defined by scenarios, with 

uncertainty estimated based 

on simulations with varying 

input parameters 

Max pressure Maximum avalanche pressure 4 states: = 0 - 300 

[kPa] 

Derived from velocity, with 

uncertainty estimated based 

on simulations with varying 

input parameters 

Nodes representing ecosystem functions   

Release 

prevented 

Probability a release would be 

prevented by the forest 

Boolean Logical combination of 

"Release" and "Potential 

prevention" 
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Prevention Height of snow in prevented 

avalanche release 

11 states: 0 - 3 [m] Logical combination of 

"Release prevented" and 

"Release height" 

Detrainment Height of snow detrained in forest 

during avalanche 

7 states: 0 - 0.8 [m] Learning from RAMMS 

simulations with varying input 

parameters 

Risk assessment and valuation nodes   

Building Presence of a building Boolean  

Building type Type of building One-family house, 

farm building, 

guesthouse, multi-

family house, 

industrial, 

infrastructure 

Distribution of types from 

local data 

Lethality Avalanche pressure is lethal Boolean Fuzzy logic based on values 

from literature (Swiss National 

Platform for Natural Hazards) 

People per 

building 

Average no. of people per building 6 states: 0 - 20  Fuzzy logic based on values 

from literature 

People 

present 

People are present in a building Boolean Fuzzy logic based on values 

from literature 

Damage Building is destroyed by avalanche Boolean Fuzzy logic based on values 

from literature 

Building cost Cost of destroyed building 6 states: 0 - 10^7 

[CHF] 

Distribution per type from 

local data 

Damage (cost) Cost due to damaged building 7 states: 0 - 10^7 

[CHF] 

Logical combination of 

"Damage" and "Building cost" 

Cost of human 

death 

 Constant: 5*10^6 

[CHF] 

Constant value from 

literature, Life Quality Index 

approach (Merz et al. 1995) 

Lethality (cost)  5 states: 0 - 10^8 

[CHF] 

Logical combination of 

"Lethality" and "Cost of 

human death" 

Output nodes  

Provision Combination of prevented release 

and detrained snow height 

12 states: 0 - 4 [m] Sum of "Prevention" and 

"Detrainment" 

Demand Avalanche risk to people and 

buildings 

5 states: 0 - 

1.1*10^8 [CHF] 

Sum of "Damage (cost)" and 

"Lethality (cost)" 
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6.2 Land-use scenarios in Sierra Nevada 

Authors: Moreno-Llorca R., Ros-Candeira A., Alcaraz-Segura D., Herrero-Lantarón J., Bonet-García F.J., Millares-

Valenzuela A. (UGR) 

Due to the combined effects of climate change and shifts in land use, the distribution and structure of the 

vegetation of the Sierra Nevada has been undergoing rapid change, which in turn affects the associated ecosystem 

services. The cover of tree formations in Sierra Nevada has expanded from 15% to 51.23% over the last 60 years, 

while the areas of scattered tree cover and natural forests have densified, and the area of cultivated fields has 

declined (from 17.8% to 4.72%) (Zamora et al. 2016). Therefore, it is important to ascertain future land-use change, 

as well as its effects on vegetation and ecosystem services. 

The main purpose of this study is to facilitate the land-use management of Protected Areas (PAs) based on 

ecosystem services (ES). A BBN is being designed to develop future land-use scenarios for the Sierra Nevada under 

different environmental and management conditions. Afterwards, we will implement these scenarios in other ES 

assessment models. The analysis of ES trade-offs in several scenarios will help managers to predict the state of ES 

and their relations in the future. 

 

 

Figure 6.2-1: Framework of the study on future ecosystem services in the Sierra Nevada. 

6.2.1 Development of the Bayesian Network 

The process to develop the BBN began with a literature review of several models of land use change (Renwick and 

Revoredo-Giha 2008, Díaz et al. 2011, Lamarque et al. 2013, Celio et al. 2014, Celio and Grêt-Regamey 2016) with 

a special emphasis on the actors who make the decision to change land use. Once a preliminary set of drivers of 

land use change was defined, we used an iterative process of consultation with experts and workshops with 

stakeholders to define the nodes of the network, their different states and the causal relationships between 

variables in the BBN. 

Interviews were initially carried out with expert researchers on changes in land use and agricultural activity in the 

Sierra Nevada. In the interviews, the drivers found in the literature were discussed. It was analyzed which drivers 



D7.3 Ecosystem service mapping with Bayesian Networks – a manual   

 

  

  Page 40 of 71 

 

Co-funded by the  
European Union 

ECOPOTENTIAL – SC5-16-2014- N.641762 

were relevant for the Sierra Nevada case. An initial structure of the Bayesian network was discussed, without 

addressing the states of the variables. 

Afterwards, three workshops were carried out with experts and stakeholders, one in each differentiated zone of 

Sierra Nevada: north-west, south, and east. Stakeholders in attendance were cattle ranchers, farmers and irrigation 

organisations. Participating experts were rural development agents and technical staff from the local agricultural 

offices. 

The first activity was to validate the drivers of the part of the network related to stakeholders’ decisions.  To do 

this, the drivers were presented one by one. It was discussed whether this driver was relevant in Sierra Nevada and 

why. There were drivers that aroused a wide consensus from the beginning. In other cases, the reasons pro or con 

the importance of the driver were discussed. The final decision to include or exclude a driver could always be made 

by consensus. Subsequently, the same procedure was used to establish relations between the variables, 

designating, on a case-by-case basis, the child nodes and the parent nodes. 

 

 

Figure 6.2-2: Bayesian Network developed to model the land use changes in Sierra Nevada (Spain). The nodes are grouped 

and coloured based on the types of variables they represent. Spatial inputs are EO/RS/Model and topography nodes, while 

other inputs include policy and social data. 

6.2.2 Quantifying the network (CPTs) 

After designing the BBN, we planned to parameterize the CPT of the network based on two different type of 

sources: experts and stakeholders. Due to the preliminary attempts to estimate the probabilities with each type of 

group, we decided to use separate participation techniques for the experts and stakeholders, to better adapt to 

each profile's way of understanding probabilities. The part of the network related to stakeholder’s decisions is 
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parameterized with local people and Sierra Nevada PA-staff. All other variables will be parameterized by expert 

knowledge. 

6.2.2.1 Stakeholder knowledge 

While experts are more familiar with the concept of probability, it is difficult for stakeholders to decide in terms of 

the probability of a state as a function of a combination of states of the parent nodes in a network. They are more 

accustomed to choosing which is the most suitable (more likely) choice between two different options. Therefore, 

we used a choice-experiment approach, where the stakeholders are presented with two options based on 

combinations of parent node states, and they choose which option is suitable. 

To this end, we designed an online survey for each child node of the network. The survey iteratively asks the 

respondent to choose between two scenarios based on different combinations of the states of the parent variables. 

As the respondent is replying, the software detects the missing combinations of the variables‘ states to have 

sufficient answers.  Once the software has obtained information about all combinations (this is configurable to a 

specific set of information), the survey ends. 

 

 

Figure 6.2-3: Workshops with stakeholders were carried out to define variables, the states of variables and to determine 

causal relations. Afterwards, individual surveys, based on scenarios selection, were carried out with stakeholders to 

parameterize the CPTs. 

The results of the survey are converted to a frequency table, which is used to fill the CPT of the corresponding node. 
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Table 6.2-1: Example of the parameterisation of a CPT based on the survey, for one of the combination of profitability of crop 

node. 

 Slope Over 25% 

 Altitude Lower 1400 mas Over 1400 mas 

 Access Next to a road Far from road Next to a road Far from road 

Profitability of 

plot 

High 0,56 0,15 0,36 0,01 

Low 0,44 0,85 0,64 0,99 

 

6.2.2.2 Expert knowledge 

We will carry out two workshops with experts, who have a better understanding of the approach of defining 

probabilities for the different states of the children variables. The experts were selected on the basis of scientifically 

relevant criteria to represent the following categories: ecology, agriculture, livestock, hydrology, landscape and 

land-use and finally, conservation and agricultural management. 

6.2.3 Spatial application 

The BBN is developed to assess future land use scenario in a spatial way. There are three types of spatial nodes in 

the BBN: 

·         Target node. Land use on time 0 and time 1 are the main spatial nodes, where land use at time 0 is an 

input to the model, while land use at time 1 is the output.  

·         EO/RS/Model nodes. Several nodes are spatial information from Earth Observation/Remote 

Sensing/Model outputs: proximity to large plot, plot area, distance to roads and water availability. 

·         Topography nodes. Slope and altitude are topographical variables used as input in the BBN. 

  

The spatial information come from different sources and formats. Raster information has 10 meters’ resolution 

while vector information is on a scale of 1:25,000. The extent of the study is the limit of Natural and National park 

of Sierra Nevada. 
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Figure 6.2-4: Modelled land uses scenarios using BN-spatial R package. Preliminary implementation of Sierra Nevada BBN in a 

watershed of Nevada municipality. The map shows the most likely class of land use. 

6.2.4 Dynamics 

We are planning to run the model in a dynamic approach in the implementation of the BBN in gBay.  Land use at 

time 0 is the first input in the network and land use at time 1 is the result of the first step. Afterwards, land use at 

time 1 is the input in step 2 and so on. 

The temporal resolution is five years and the time period to analyze is fifty years. 

6.2.5 Description of the network nodes 

Table 6.2-2: Description of nodes in the land use change network, their states, and methods use to quantify their conditional 

probabilities. 

Node Description States CPT method 

Input nodes - Topography nodes     

Slope Slope percent-based DTM. GIS 

analysis. 

3 states: 

·       Below 12 percent 

·       Between 12 and 25 percent 

·       Above 25 percent 

 

Altitude Elevation of a plot [m.a.s.]. GIS 

analysis. 

2 states: 

·       Below 1400 m.a.s. 

·       Above 1400 m.a.s. 

 

Input nodes - EO/RS/Model nodes   
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Distance to 

roads 

The distance between a plot 

and a road or a trail to 

facilitate the harvesting. GIS 

analysis. 

2 states: 

·       Next to road 

·       Far from road 

 

Plot area Size of the plot. GIS analysis. 3 states: 

·       Smaller than 3 has. 

·       Between 3 and 10 has. 

·       Greater than 10 has. 

 

Water 

availability 

Water availability to irrigation 3 states: 

·       Low 

·       Medium 

·       High 

 

Proximity to 

large 

production 

plots 

Proximity to large production 

areas 

2 states: 

·       In the same municipality 

·       In other municipality 

 

Land use t0 Reclassification of 

government land use-land 

cover map. 

8 states: 

·       Urban 

·       Dry woody crops 

·  Irrigated horticultural crops 

·       Irrigated woody crops 

·       Pastures 

·       Scrubland 

·       Gallery forest 

·       Forest 

 

Input nodes - Social data nodes   

Part time 

business 

Opportunity to complement 

agricultural production with 

other economic activity 

2 states: 

·       Yes 

·       No 

 

Old population Presence of population over 

65 years of age 

3 states: 

·       Lower 10 Percent 

·       Between 10 and 20 Percent 

·       Higher than 20 percent 

 

Level of training Level of training and 

knowledge of farmers 

2 states: 

·       Low 

·       High 

 

Young 

population 

Presence of population under 

40 years of age 

3 states: 

·       Lower 10 Percent 

·       Between 10 and 20 Percent 

·       Higher than 20 percent 

 

Input nodes - Policies nodes   



D7.3 Ecosystem service mapping with Bayesian Networks – a manual   

 

  

  Page 45 of 71 

 

Co-funded by the  
European Union 

ECOPOTENTIAL – SC5-16-2014- N.641762 

Conservation 

policies 

Permissiveness with 

agricultural activities 

3 states: 

·       Low 

·       Medium 

·       High 

 

Agricultural 

payments 

Right to receive agricultural 

payments 

2 states: 

·       Right to payments 

·       No right to payments 

 

Nodes representing farming behaviour   

Agricultural 

network 

Social network of farmers ? to be defined Expert 

workshops 

Intention to 

farm 

Intention to engage in 

agricultural activity 

? to be defined Expert 

workshops 

Node representing policies influence   

Policies 

influence 

Influence of the 

environmental and agrarian 

policies in the decision of 

cultivating or not a certain 

place. 

3 states: 

·       Pro abandonment 

·       Neutral 

·       Supporting traditional use 

Expert 

workshops 

Node representing profitability of plot   

Profitability of 

plot 

Suitability of a particular site 

for cultivation based on 

biophysical criteria 

3 states: 

·       Low 

·       Medium 

·       High 

Stakeholder 

surveys 

Suitability to 

farm 

Suitability of a particular site 

for cultivation based on 

biophysical criteria and water 

availability 

2 states: 

·       Low 

·       High 

Stakeholder 

surveys 
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6.3 Collaborative modelling of ecosystem services in Doñana 

Authors: Pablo F. Méndez, Luis Santamaría (EBD-CSIC) 

 

The overall goal is of the modelling exercise is to better understand and predict the influence of multiple 

environmental and management/policy factors over the waterbird community of the protected marsh of the 

Doñana PA. The main interests are twofold. First, the interest lies in the ability of BNs to capture the perceptions 

and beliefs of different stakeholders (e.g., decision-makers vs experts) before and after existing and new 

information is incorporated into the BN for the modelling of new scenarios. In addition, the interest lies in the use 

and overall performance of BNs as a tool for ecological prediction and decision support, able to incorporate and 

update information from different sources, including extra expert knowledge and empirical sub-models, in a 

modular fashion. In this case, we considered their twofold diagnostic (bottom-up reasoning) and 

explanatory/predictive (top down reasoning) capability, which allows the modelling process to progress in 

situations of incomplete information (e.g., missing or still incipient data on key system variables) (Marcot et al. 

2006, Castelletti and Soncini-Sessa 2007). We were also interested in their ability to integrate both qualitative and 

quantitative information (Chen and Pollino 2012). In both cases, we chose BNs due to their appeal for collaborative 

model development, visualization of causal relations, filling of data gaps and identification of uncertainties 

(Castelletti and Soncini-Sessa 2007, Kleemann et al. 2017). 

Doñana PA`s BN model will be developed in two stages:  

 

Stage 1: elicitation of CPTs based on expert judgement. 

Stage 2: mapping ecosystem services using information derived from remote sensing and empirical models 

outputs. 

 

BN development is currently towards the end of Stage 1, which has consisted of different tasks, as described 

below. 

6.3.1 Stakeholder engagement 

Here, by stakeholder engagement we refer to the overall process of stakeholder analysis and identification purpose 

of expert judgement elicitation and their further engagement along the modelling process. This process has 

benefitted from our long-term research program in Doñana based at the Doñana Biological Station, which has 

allowed us to develop an extensive collaboration network with managers, researchers and key stakeholders onsite 

(Méndez et al. 2010, Mendez et al. 2012). Based on purposive, judgement sampling, stakeholders were selected at 

three different levels: decision-makers (parties with the power of making decisions among alternatives affecting 

the course of implementations), key stakeholders (parties affected by decisions at an executive level but without 

direct decision power) and experts (individuals knowledgeable about the factors and issues under investigation, 

due to their education, training and experience). All of them were considered as model end users. In engaging 

stakeholders at an early stage we aimed at enhancing the acceptance and trust of model structure and 

specifications, as well as on final decisions and management actions, through the strengthening of their sense of 

ownership of both the model’s outputs and the decision process informed by them. We then proceeded to design 

the BN network. 
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6.3.2 Developing the Bayesian Network 

To build the BN network, which we formally call the model’s Directed Acyclic Graph (DAG), we first developed a 

conceptual model of our study system during a first workshop (1st Stakeholders Workshop, April, 2017) involving 

key decision makers, general stakeholders and experts. At the outset of the workshop, to trigger initial discussion 

with participants, we presented recently published statistical analyses published in the context of ECOPOTENTIAL 

that identify a set of environmental predictors of waterbird distribution and habitat use in Mediterranean 

wetlands under climate change, including the Doñana marshes (Ramírez et al. 2017). Then, we held a structured 

discussion about the criteria that Doñana’s waterbird community must fulfil to be considered in a “good 

conservation status”. We focused on the richness/diversity of the community and the population trends of 

common, threatened and representative/indicator species. Finally, we built the conceptual model asking 

participants to identify factors (i.e. variables), either environmental (e.g., salinity) or social (e.g., management 

interventions, policies), that would ensure the accomplishment of a final goal established in the prior activity: a 

stable, diverse and representative waterbird community in Doñana. In a backcasting fashion, participants 

identified from primary factors directly affecting the final goal (primary causal variables) to secondary factors 

affecting the primary ones (secondary causal variables), and so on. The process consisted of subsequent 

participation rounds that ensured the concurrent intervention of all participants (round robins), repeated until 

everyone considered the model (Figure 6.3-1) saturated.  

 

Figure 6.3-1: Conceptual model of our study system developed during the 1st Stakeholders Workshop. 

Second, we built a preliminary DAG of the study system in laboratory, based on the workshop’s conceptual model, 

including only a subset of environmental input variables as parent nodes. The selection of input variables was based 

on the opinion obtained from key experts at the previous workshop, and the existence of empirical data for the 

environmental variables so as to allow for future model validation, testing and use for predictive or diagnostic 

purposes. It was also aimed to assess potential shortcomings of the future BN model derived from data limitations 

or incorrect variables or interactions, as well as to reduce its complexity (i.e. enhancing its parsimony) thus easing 

the ascription of probabilities during its parametrization using expert judgement (see below). Nodes were classified 

using Cain’s (2001, pp. 20-21) (Cain 2001) categories for generalizing network structure, in order to distinguish 

among decision, random and utility nodes. We used as few states as possible to keep resulting CPTs tractable 

(Marcot et al. 2006). 
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In a third stage, we defined our ecological output variables of interest in the DAG. We classified waterbird species 

in different groups based on the statistical analyses mentioned above. After that, we consulted with two in-house 

experts as a means of validation of our classification. Based on the final classification obtained, we devised and 

introduced into the DAG the ecological variables as an output child node (see 6.3.3 below for further details). 

6.3.3 Quantifying the network (CPTs) 

Finally, we ran a second workshop (2nd Stakeholders Workshop, October, 2018) with a larger group of decision 

makers, general stakeholders and experts. Our main aims were: 

 

1. To validate: (1) our grouping of breeding and wintering waterbirds; (2) our study system’s DAG (Figure 6.3-

2), which contains a subset of environmental factors as causal parent variables, obtained in the 1st Stakeholders 

Workshop. 

2. To parametrize the DAG by eliciting expert judgement from the participants in order to: (1) build a first 

version of our Bayesian Network model; (2) assessing differences in perceptions among the participants (decision 

makers, key stakeholders, experts), as well as an overall degree of uncertainty from their subjective judgement; (3) 

assessing the requirements, interoperability and complementarity of this first version with a second-iteration 

version including empirical information from different sources (e.g., in-situ data, remote sensing data, model 

outputs) to be used for predictive and/or diagnostic purposes.  

 

 
Figure 6.3-2: Directed Acyclic Graph of our study system. 

 

At the outset of the workshop, we described the whole activity, including a short introduction to ECOPOTENTIAL, 

the results of the first workshop and the objectives and tasks of the second workshop. Then using pre-defined 

document, we asked participants to rate three different criteria for the groups stemming from our own grouping 

of the waterbird community, based on the above mentioned statistical analyses: representativeness, conservation 

value, diversity. This activity was performed for both wintering and breeding species. We provided participants with 

imagery of the groups from our own classification on screen. We then proceeded to an expert judgement elicitation 

exercise, asking participants to assess the conditional probabilities linking the DAG’s (parent) environmental 

variable nodes with the occurrence of the events defined by the output response variable (child) nodes. Parent 

variable nodes were be presented as scenarios affecting the output child nodes, consisting of different combination 

of states of the former nodes. As it was expected that not all participants were at ease with probability reasoning, 

we provided sheets containing the different scenarios and a verbal/numerical scale to assess their probabilities 
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over the output nodes. To facilitate the cognitive process and ease the mobilization of the participant’s expertise, 

they were able to use the imagery cards previously provided, which included one representative species for each 

waterbird group. 

 

Using the verbal/numerical scale provided, the general question to participants was: given this scenario (certain 

combination of states of the parent nodes), what is the probability that this output is present. Participants were be 

asked to think scenarios as single events and to assume waterbird (separately for wintering and for breeding) 

populations as already established in the Doñana marshes.  

 

To reduce the number of elicited response probabilities, we used the Conditional Probability Table (CPT) calculator 

provided by Cain (2001), which uses the probabilities to key scenarios and interpolates all other combinations. This 

procedure reduced the number of probabilities directly elicited by participants, thus enhancing the consistency of 

the elicited values and the efficiency of the elicitation process. The CPT calculator reduces the number of scenarios 

to key anchoring points in a so-called Elicited Probability Table (EPT), which are then interpolated to complete the 

entire table. In general, key anchoring points consist of: (1) all of the parent nodes set in an extreme state; (2) all of 

the parent nodes set in the other extreme state; (3) each parent is switched from one extreme to the other 

consecutively, to set the rest of key anchoring points. 

 

As a final step, a questionnaire was administered to characterize the experience of the participants in the study 

system. Questions asked were: 

 

1. Name and surname. 

2. Main area of work (ecologist, conservationist, business owner). 

3. Years of experience or working in connection with the study system in general (e.g., waterbird ecology or 

conservation, bird watching, hunting, etc.). 

4. Years of experience or working in connection with the study system in Doñana. 
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6.4 The impact of aquatic ecosystems provisioning services on tourism in the Danube Delta 

Authors: Constantin Cazacu, Cristian Mihai Adamescu (UB) 

The Danube Delta is the second largest delta in Europe, after that of the Volga River and one of the best preserved 

in the world. The geomorphology of the area is formed by the dynamics of the river arms, low altitudes and the 

presence of the sea, creating a complex landscape of freshwater ecosystems (canals, shallow lakes, and wetlands), 

flood plains, alluvial forests, reed-beds, lagoons and coastal area. Due to its high biodiversity and uniqueness of 

landscapes, the delta attracts about 150000 tourists every year, which is ten times the number of inhabitants. 

We developed a storyline aimed at assessing trade-offs between ecosystem provisioning services and tourism and 

recreation in the delta. System productivity is reflected by water quality and biodiversity, which may influence the 

tourists’ distribution and interests within the area. 

6.4.1 Development of the Bayesian Network 

Our model is based on the experts’ views and consultation with stakeholders’ aimed at describing the relationships 

between the provisioning services and the tourism and recreation activities as cultural ecosystem services provided 

by the ecosystems from the Danube Delta Biosphere Reserve   

The development of the BBN involved a several steps, as we have to accommodate scientific data from observations 

as well as stakeholders’ perceptions. 

In a first step, we develop a diagram integrating the essential variables described in the storyline and potential 

indicators or models that can be used to assess them (Figure 6.4-1). 

 

Figure 6.4-1: Diagram representing the storyline developed for the Danube Delta, including the identification of essential 

variables at the storyline level. 

The second step is to develop a BBN, focusing on exploring the link between aquatic ecosystem provisioning services 

and tourism and recreational activities. We built a network considering several variables that influence the 

quality/productivity of aquatic ecosystems (e.g. nitrogen phosphorous ratio, total suspended solids, phytoplankton, 

fish species, macrophytes, and benthic invertebrates) and tourist attractions (e.g. habitat quality, fish productivity, 

bird density and accessibility) (Figure 6.4-2). Together with stakeholders (mainly researchers), we developed a 
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graphical representation showing causality relationships between the variables that are influencing the system 

productivity and the recorded distribution of tourists. 

Three categories of stakeholders were involved in the process: researchers specialized in ecology, ornithology, 

fishery and chemistry (form the University of Bucharest and from Danube Delta National Institute), managers from 

Danube Delta Biosphere Reserve administration and representatives of local companies dealing with tourism and 

commercial fishery. 

 

Figure 6.4-2: Bayesian Belief Network developed for assessing the trade-offs between provisioning services and the tourism 

and recreation in the Danube Delta. The nodes are grouped and coloured based on the types of variables they represent 

using a Drivers, Pressures (orange), State (green), Impact (red), Response (blue) approach model. Total suspended solids 

(TSS), phytoplankton (represented by chlorophyll-a) and macrophyte cover are both remote sensing and in-situ data. The 

outputs of the network are the tourists’ interests, bird densities and fish productivity. Arrows represent causalities, between 

different ecosystem properties and ES. 

6.4.2 Quantifying the network (CPTs) 

The probability tables were derived after agreement between experts and compared with literature. 

Some of variables (e.g. concentration of chlorophyll a, nitrogen, phosphorus, fish and birds abundance etc.) were 

estimated both from historical data as well as through in-situ monitoring activities using exploratory statistics to 

determine the range of the variables and the relations among them. 

6.4.3 Spatial application 

The BBN is planned to be run spatially at full extent of the Danube Delta protected area, using an ecosystem 

distribution map, interpolated layers of variables measured in-situ (e.g. chlorophyll a, total suspended solids, fish 

and birds abundance, number of tourists) and remote sensing data describing the water quality (e.g. water 

chlorophyll content, water suspended solids, land surface temperature, and hydroperiod). The output resolution 

would be about 1 square km. 
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6.4.4 Description of the network nodes 

Table 6.4-1: Description of nodes in the Danube Delta network, their states, and methods use to quantify their conditional 

probabilities. 

Node Description States CPT method 

Nodes representing  the pressure   

TSS Total Suspended 

solids 

3 states: 0 - 50 Expert knowledge (three-point estimation) 

N/P Nitrogen/ 

Phosphorous ratio 

(inverse relationship) 

3 states: 10 - 60 Expert knowledge (three-point estimation) 

Nodes representing  the state   

Water 

transparency 

Water transparency 3 states: 7.5 - 75 Expert knowledge (three-point estimation) 

Habitat quality Habitat quality 3 states: Expert knowledge (three-point estimation) 

Nodes representing  the impact   

Macrophytes Macrophytes 3 states: 10 – 60 Expert knowledge (three-point estimation) 

Benthos Benthos 3 states: 10 – 60 Expert knowledge (three-point estimation) 

Phytoplankton Phytoplankton 3 states: 50-19.6 Expert knowledge (three-point estimation) 

Fish species Fish species 3 states Expert knowledge (three-point estimation) 

Bird density Bird density 3 states Expert knowledge (three-point estimation) 

Fish 

productivity 

Fish productivity 3 states Expert knowledge (three-point estimation) 

Nodes representing  the response   

Accessibility Accessibility 3 states:20-50 Expert knowledge (three-point estimation) 

Separate nodes   

Tourism Tourism 3 states: Expert knowledge (three-point estimation) 
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6.5 A Trade-off Analysis of Ecosystem Services and Dynamic BNs in the Dutch Wadden Sea, the 

Netherlands 

Authors: Sonja Wanke, Alex Ziemba, Ghada el Serafy (Deltares) 

Evaluating interactive effects of global factors with local pressures is one of the major challenges for future 

management of the Wadden Sea. Global pressures like sea level and temperature rise, and invasive species act on 

a large scale. For future management strategies it is vital to understand effects of global drivers and their influences 

on a regional level (van Beusekom, J. E., Buschmann, C. & Reise 2012). In combination with local anthropogenic 

activities, global pressures can have significant effects on the ecosystem. When modelling the marine environment 

and its ecosystem services, it is therefore vital to include global and regional pressures such as climate change 

(global pressures) and eutrophication, fisheries and pollution (regional pressures) that may frequently occur as non-

linear interactions (Petersen et al. 2017). The following research was divided into two separate studies to limit its 

complexity. The first part dealt with a trade-off analysis between two different ecosystem services developing a 

rather large Bayesian Network. Whereas the second part developed a much smaller Dynamic Bayesian Network 

showing cumulative and cascading effect on the ecosystem and its services in the Dutch Wadden Sea. 

6.5.1 Developing the Bayesian Network  

In order to get a better qualitative understanding of the system, the risks for the system were identified with a 

DPSIR. Information was gathered from literature. The DWS is a complex system that has various driving forces. 

Anthropogenic drivers dominate the system over natural drivers. The most influential anthropogenic drivers are 

commercial fishery, water pollution, maintenance and other activities. Climate change is a global driver and the low 

lying coastal land is the result of tectonic movement. While both of these factors are not manageable, their impacts 

can be minimized. 

 

 

Figure 6.5-1: DPSIR Model of the Dutch Wadden Sea 

Once the DPSIR framework and the possible trade-off analysis were done, a generic conceptual model of the Dutch 

Wadden Sea could be prepared. The aim of this exercise was to get a better understanding of the relationship 
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between the two chosen ESs. The red squares represent the drivers and therefore the starting point. The arcs 

between different types of squares depict the general direction of the cause-effect relationship within the system. 

The model includes different kinds of topics that affect fish populations (blue), bird watching (green) or both alike 

(yellow). The conceptual model is a fairly holistic view of the DWS as it includes factors that cover various time and 

spatial scales within the DWS. In order to build a BBN from the conceptual model, it needs further simplification, 

even though it already describes a simplified world. However, it is important to also be aware of the underlying 

causal relationships and the system complexity when building a BBN. Furthermore, making a conceptual model 

helps to identify which variables are impacted by which variables, hence illustrating the relevance of some factors 

such as ‘Forging Habitats’ over others (e.g. ‘Grazing’). All in all, this model helped to translate the immense amount 

of information identified above into more tangible variables. 

 

Figure 6.5-2: Conceptual Model of the Dutch Wadden Sea 

6.5.2 Quantifying the network (CPTs) 

Different types of data (e.g. expert knowledge, in-situ measurements) were integrated for the purpose of these two 

studies. 

6.5.2.1 Data analysis 

For any used data set, preparation is required as Netica learns data in a specific way. The Data preparation 

as filtering, formatting and validating for this research is carried out with Excel; other studies may also use 

R or Python. Some data sets consisted of a great amount of cases (more than 1 million) so in order to 

prepare this data the Add-In Power Pivot was used. Another Add-In that was helpful for the data 

preparation is Power Query, as it simplifies data fusion. The generic Framework for Data Analysis is as 

follows: 

-       Data inventory and collection 

-       Data cleaning and reduction 

-       Data Pre-processing and analysis 
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-       Data Discretization 

-       Final file adjustment and export 

6.5.2.2 Expert knowledge 

Expert elicitation can be used to assist decision making before all necessary data is available and should not be used 

as a substitute (Pollino & Henderson, 2010). It is a rather demanding task for experts to assign a value of probability 

parameters as the human reasoning is rarely based on such probabilities (Kjærulff & Madsen, 2013). When using 

expert knowledge it is vital to document, defend and validate the model structure’s basis and its conditional 

probabilities (McCann et al. 2006). Several methods exist for probability elicitation: iterative processes (combining 

the experts expressed knowledge); probability scales containing verbal and/or quantitative anchors; estimates of 

probability based on the expert’s range of belief; and usage of frequencies. Participants that have a mathematical 

background provide a more accurate estimation on their beliefs based on the expert’s range of belief (Constantinou 

et al. 2016). 

The expert knowledge was implemented into the model with the following steps: 

1.    Link the expert variable to the child and (optional) parent variables. 

2.    Using expert judgement parameterize the expert variable’s CPT 

3.    Each child variables’ CPT is parameterized with the expert knowledge 

4.    rim-Equation is than used to learn the probability distribution for all to each state m of the child 

variables (Constantinou et al. 2016). 

The scalability of this method can be determined by various factors. The first on is the type of model as it is only 

useful for models that are incorporating expert judgement and features of data driven models. Additionally, the 

method is independent from the size of the model. Though, it is of importance how the expert variables are 

introduced. It is less challenging to link two data driven variables with an expert variables when the network consists 

of thousands of variables. On the contrary is more challenging to link three data –driven variables with an expert 

variable when the network has only three variables. 

6.5.3 Spatial application 

The trade-off analysis BN has a spatial node (habitat). At this stage the CPT was filled in by estimating the sizes of 

each habitat. In the future more accurate land cover and remote sensing data will be used.   

6.5.4 Dynamics 

The construction of a DBN model is not a linear process but rather an ongoing cycle in which new information from 

field tests, literature and other sources can be included once they become available. A conceptual model of the 

system should be created prior to building a BN which syntheses existing knowledge. It is possible to build various 

conceptual models when showing different level of detail, perspectives or scales. This stage provides a visualized 

summary of drivers and their direct and indirect relations (link) to other variables and outputs. The conceptual 

model can help expose weaknesses, therefore (Jakeman et al. 2006) advised to always undergo the 

conceptualisation step. Experts are able to review the conceptual model after the model has been built. Their 
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feedback may also help to recognize the most important variables, processes and possible errors can be corrected 

(Chen & Pollino, 2012). 

 

Figure 6.5-3: Conceptual Dynamic Bayesian Network 

After this step, the physical variables that are to be included are chosen and it is decided how detailed the model 

is supposed to be. When defining the variables it is important to do it in a way that all users are able to understand 

the represented variables (Kragt 2009). Kragt (2009) and Marcot et al. (2006) recommended to keep the number 

of parent variables to three or fewer in order to bound the CPT size. For the same reason, their states should be 

maximum five (Marcot, et al., 2006). These recommendations keep the CPT small enough to be tractable and 

understandable. A large amount of intermediate variables, also known as latent variables, will contain uncertainty 

propagation. 

6.5.5 Validation and sensitivity analysis 

Both networks were validated by experts multiple times. As a next step a sensitivity analysis using Netica is planned 

to be performed. 

6.5.6 Description of the network nodes 

6.5.6.1 Using Bayesian Networks to Capture Trade-offs Between Ecosystem Services 

During the first phase, good background knowledge about the study area and its resulting ESs were gained. 

Additionally, information on the directional correlation between mussel dynamics and bird populations was 

acquired. On the basis of that a literature based BN was constructed. The whole network was comprised of more 

than 40 nodes which had an effect on each other in one way or another. Each node was either trained with data or 

expert knowledge. To train the network, measurements from the last 10 years were taken. Monthly and weekly 
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averages were determined during the data analysis to see whether there are big differences between these two 

distributions. 

 

The proposed literature based BN conceptual model structure was improved and enhanced and turned it into a 

fully functional BN model. This was done by consulting with experts from Deltares, the Netherlands. The first round 

of expert elicitations focused on a discussion of the proposed literature based BN model as well as its purpose. 

Furthermore, the suitability of the chosen nodes and links was discussed. This was done via face-to-face meetings. 

These meetings led to the identification of superfluous nodes which were defined during the literature review, but 

were deemed inappropriate in the context of the Dutch Wadden Sea and therefore exchanged, deleted, or 

redefined. 

Different test and experiments were conducted once the network was trained to see how certain nodes would 

affect other nodes. For example, not only parent nodes can be filtered. The BN is able to show the probabilities of 

parent and even “grandparent” nodes when a child node is filtered. Looking at a snippet of the whole BN, when the 

Commercial Fishing node is set to a very low state, it can be seen that this implies a certain state in the parent nodes 

(Mussel Stock) and even “grandparent” nodes (NPP, O2, and Water Temperature). In this case the model assumes 

a low mussel stock when Commercial Fishing is decreased. In case the fishing activity is set to very high, the fish 

stock increases. It is worthwhile to mention that this assumption was not entered into the model at any time but is 

an effect of the given and trained data. 

 

 

 

Figure 6.5-4: Complete BN Structure 

 

Table 6.5-1: Description of nodes in the network, their states, and methods use to quantify their conditional probabilities. 

Node Description States CPT method 

Data Trained Nodes     
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Oxygen level of the 

water 

States were determined by dissolved oxygen (DO) 

as it acts as physio and chemical supporting 

element in (salt) water 

4 states: 

-      Low 

-      Medium 

-      High 

-      Lethal 

  

Wind Mixes the upper layers of a water body by 

increasing tides and wave heights (Reise, et al., 

2010) 

9 states according to the 

Beaufort scale 

  

Water temperature Is vital for many biological processes such as 

primary production which affects the algal growth 

rate. 

5 states: 

-      Extreme low 

-      Low 

-      Medium 

-      High 

-    Extreme high 

  

Organic matter It is matter composed of organic compounds which 

come from dead organisms and their waste 

(detritus). 

3 states: 

-      Low 

-      Medium 

-      High 

  

Light A fundamental factor in the ecology of aquatic 

ecosystems is underwater light as the quantity of 

light is crucial for photosynthesis for both benthic 

and pelagic primary producer (Obrador and Pretus 

2008) 

3 states: 

-      Low 

-      Medium 

-      High 

  

Net primary 

production 

Contain chlorophyll-a, which can therefore be used 

as an indicator for PP. This node is important as it 

represents the lowest trophic level and with that 

the foundation of a food web (McDonald et al. 

2016) 

3 states: 

-      Low 

-      Medium 

-      High 

  

Phosphate Is required for algal accumulation and growth, such 

as phytoplankton, in the water column alongside 

other nutrients (McDonald, et al., 2016) and if its 

concentration is too high it can cause 

eutrophication (Reise et al. 2010) 

  

3 states: 

-      Low 

-      Medium 

-      High 

  

Nitrate It is vital for algal accumulation and growth 

(McDonald, et al., 2016) 

3 states: 

-      Low 

-      Medium 

-      High 

  

PCB These chemicals can cause cancer and problems 

with the nervous system in humans and can be 

detected in fish and food products. 

3 states: 

-      Low 

-      Medium 

-      High 

  

PAH Their toxicity is moderate to marine organisms but 

can produce carcinogenic metabolites in organisms 

(Cole et al. 1999) 

3 states: 

-      Low 

-      Medium 

-      High 
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Amount of 

Nutrients 

Due to anthropogenic activities such as agriculture, 

industry and domestic effluent cause an increase in 

nutrient load in the ecosystems 

3 states: 

-      Low 

-      Medium 

-      High 

Summarising node 

Pesticides Are chemicals that are used as insecticides, 

fungicides, herbicides and rodenticides (Eddleston 

2016) available for usage in the 1940. 

2 states: 

-      Below norm 

-      Above norm 

  

Pollutants & 

Pesticides 

Summarizes the concentration pesticides and other 

pollutants such as heavy metals, PCB, PAH and PFC. 

2 states: 

-      Good 

-      Bad 

Summarising node 

Gas Exploitation Gas extraction takes place in the WS. 3 states: 

-      Low 

-      Medium 

-      High 

  

Shipping & 

Harbours 

Even though numbers are declining, accidents at 

sea and the illegal disposal of harmful substances 

still constitute a potential danger to the 

environment in the WS area. 

3 states: 

-      Low 

-      Medium 

-      High 

  

Habitat Depending on the habitat different species, 

ecosystem services and activities can be found. 

5 states: 

-      Bad Tidal flat 

-      Salt marshes 

-      Near shore North 

Sea 

- High dynamic gullies 

-   Low dynamic gullies 

-      Dunes 

  

Mudplain Walking One of the main tourist activities in the WS. 2 states: 

-      Yes 

-      No 

  

Invasive species May pose a risk on the natural existing bivalve 

species as they have a higher growth rate and 

recruitment success, and the absence of natural 

predators (Nehls et al. 2009) 

3 states: 

-      Low 

-      Medium 

-      High 

  

Resting places for 

birds 

Are attracted to the WS because it is an area with 

high food availability such as bivalve species, 

worms (Eriksson et al. 2010) or fish. 

  

3 states: 

-      Low 

-      Medium 

-      High 

  

Expert Trained Nodes     

Recreation Every year, tourist visits the WS and DWS which 

results in increased disturbance and ongoing 

development of the static coastline (CWSS 2012). 

2 states: 

-      Attractive 

-      Not attractive 

Experts knowledge (3-

point expert elicitation) 
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Food provision for 

predators 

It is also influenced by itself and the available blue 

mussel the predator may feed on. 

2 states: 

-      Low 

-      High 

Experts knowledge (3-

point expert elicitation) 

Spawning grounds 

for mussels 

Vital for mussels. 2 states: 

-      Sufficient 

-      Insufficient 

Experts knowledge (3-

point expert elicitation) 

Pressures & 

Activities 

Is the sum of human activities such as tourism, 

commercial fishery, and water pollution. 

3 states: 

-      Low 

-      Medium 

-      High 

Experts knowledge (3-

point expert elicitation) 

Bird watching It is one of the main tourist attractions in the WS. 2 states: 

-      Possible 

-      Not possible 

Experts knowledge (3-

point expert elicitation) 

 

6.5.6.2 Using Dynamic Bayesian Networks to Capture Cumulative Effect on Ecosystem Services 

After carrying out expert surveys some changes had been made from the original conceptual model to the BN 

created as the first step in the design phase (see Figure 6.5-5). It was pointed out that the recruitment success and 

standing stock is highly dependent on predator (such as birds, fish, shrimp and sea stars). Another change was made 

for nutrient load which is highly connected to primary production and has a positive effect on mussel biomass. On 

the other hand, chemical pollution has rather a negative effect. Therefore, nutrient load is not connected to water 

quality anymore. As this node has only one input left (chemical pollution) it could be removed from the network in 

order to simplify it. 

When defining the variables for this BN, data sources were taken into account and whether a variable is static or 

dynamic. There follows, the CPT’s for the expert elicitations (turquoise). The blue coloured variables CPT’s are 

learned with in-situ data apart from the Nutrient Load and Chemical Pollution variables which are summarizing 

variables (red). Most of the temporary (dynamic) variables CPT’s are also trained with in-situ data (pink): Turbidity, 

Primary Production, Predators, and Blue Mussel (Blue), apart from Food Availability (Purple) which is trained with 

the help of Expert Knowledge. 
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Figure 6.5-5: BN Various Anthropogenic Pressures and Natural Conditions Affecting Blue Mussel Abundance 

Figure 6.5-5 shows the developed DBN of this study. The blue coloured variables are primarily derived by in-situ 

data. The pink coloured variables represent the temporal variables. The variables of the first time-slice are: Turbidity 

[0], Primary Production [0], Food Availability [0], Predators [0], and Blue Mussel [0]. The second time slice contains 

the variables Turbidity [1], Primary Production [1], Food Availability [1], Predators [1], and Blue Mussel [1]. Expert 

variables are the Food Availability in both Time slices and Anthropogenic Pressure. 

 

 

Figure 6.5-6: DBN Various Anthropogenic Pressures and Natural Conditions Affecting Blue Mussel Abundance - Post Time 

Expansion 

  

Table 6.5-2: Description of nodes in the Wadden Sea network, their states, and methods use to quantify their conditional 

probabilities (showing only the nodes that were not used in the static BN) 

Node Description States CPT method 

Static nodes       

Sea level Indicator for this node is the mean daily 

sea level 

3 states: 

-      Low 

-      Medium 

-      High 
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Fish Herbivory species are representing the 

second trophic state and feed on primary 

producers. Higher trophic fish species are 

predators to bivalves or species that 

compete for the same food sources. 

3 states: 

-      Low 

-      Medium 

-      High 

  

Sand nourishment Non-native sand is added on the beach 

and may change the beach’s morphology 

and could lead to local negative effect on 

macroinvertebrate communities, also 

leading to a higher amount of suspended 

matter (Leewis et al. 2012) 

3 states: 

-      Low 

-      Medium 

-      High 

  

Commercial 

Fishery 

The fishing quota was used as an indicator 

for this node which is determined by the 

Total Allowable Catches (TACs) that are 

annually set for the fish stock by the 

Council of fisheries ministers 

2 states: 

-      Higher 

-      Lower 

  

Mussel fishery & 

cultivation 

In the DWS, some unstable and young 

beds outside the protected areas were 

restricted to experimental fishery. 

3 states: 

-      Increased 

-      Decreased 

  

Shrimp fishery Can have a negative effect on mussel as 

they may eat their larvae that may have a 

positive effect on blue mussel. 

2 states: 

-      Higher 

-      Lower 

  

Trawling Its negative effects on benthic habitat are 

dependent on gear configurations, sea 

floor characteristics, depth, and 

sensitivity of the species that form the 

habitat. The response of the effected 

species and the recovery of the habitat 

vary among taxa (Malecha and Heifetz 

2017). 

2 states: 

-      Higher 

-      Lower 

  

Silicon Can co-regulate trophic shifts along other 

nutrients such as phosphorus, nitrogen 

and carbon (McDonald, et al., 2016), and 

contributes to stimulate algal growth and 

deoxygenation of the water column and 

sediment (Cole, et al., 1999) 

3 states: 

-      Low 

-      Medium 

-      High 

  

Heavy metal Are carcinogenic and toxic to humans and 

animals. 

2 states: 

-      High above legal 

concentration 

-      below legal 

concentration 

  

Chemical Pollution Summarizes the concentration pesticides 

and other pollutants such as heavy 

metals, PCB, PAH and PFC. 

2 states: 

-      Good 

-      Bad 

Summarizing node 

Dynamic nodes       
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Turbidity A fundamental factor in the ecology of 

aquatic ecosystems is underwater light as 

the quantity of light is crucial for 

photosynthesis for both benthic and 

pelagic primary producer (Obrador and 

Pretus 2008). 

3 states: 

-      Low 

-      Medium 

-      High 

  

Predators It is also influenced by itself and the 

available blue mussel the predator may 

feed on. 

2 states: 

-      Low 

-      High 

summarizing node 

Blue Mussel Can be used to represent overall effects 

on the ecosystem 

2 states: 

-      Low 

-      High 
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6.6 Whale watching (Pelagos) 

Authors: Kevin Flückiger, Ana Stritih (ETH Zürich) 

The Pelagos Sanctuary is a marine protected area (MPA) in the Mediterranean Sea aimed to protect all marine 

mammals. Due to a combination of climatic, oceanographic and physiographic factors, the area has good conditions 

for the feeding and breeding habitat of several whale and dolphin species (Notarbartolo di Sciara and Reeves 2006). 

At the same time, it is surrounded by well-developed regions with high economic activity. For tourists and locals, 

whale watching has become an increasingly popular activity, and is therefore an important cultural ecosystem 

service in the MPA. However, cetaceans in the area are threatened by pollution, ship strikes, and noise. Disturbance 

due to whale watching is also thought to be harmful to whales, but data on the activity and its impacts are scarce. 

A BN was developed to map the value of whale watching by combining data on cetaceans with expert knowledge 

on whale watching activities in the Pelagos Sanctuary. 

6.6.1 Developing the Bayesian Network  

A draft network was initially constructed through literature review, particularly regarding threats to cetaceans. 

Since literature on whale-watching behaviour and value of cetacean sightings is lacking, this part of the network 

was developed based on a workshop with stakeholders (local researchers, conservationists, and whale watching 

companies). Then, the network was developed further in an iterative process of discussion with experts, collecting 

data, and testing. 

The network contains nodes on cetacean presence (sightings and potential feeding grounds), threats to cetaceans, 

whale-watching behaviour, and the social value of cetacean sightings. 

  

 

Figure 6.6-1: Bayesian Network developed to model the ES of whale watching 
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6.6.2 Quantifying the networks (CPTs) 

Expert interviews were conducted to populate nodes describing the behaviour of whale watching companies, their 

harmfulness to cetaceans, and the impacts of other threats on cetacean wellbeing. Furthermore, the social value 

of cetacean sightings (dependant on the level of public knowledge, perceived cetacean vulnerability, and frequency 

of encounters) was estimated based on expert knowledge. 

6.6.3 Spatial application 

The BN was applied on a 4x4 km raster of the Pelagos MPE, using gBay. The spatial inputs to the BN are data on 

cetacean presence (reported sightings and modelled suitability of feeding ground), spatial data threats to cetaceans 

(shipping, noise), and information on whale-watching tour locations that was collected at the stakeholder 

workshop. 

 

 

Figure 6.6-2: A map of the "Sighting Value" of whale watching in the Pelagos Sanctuary, calculated using the BN. 

6.6.4 Validation and sensitivity analysis 

A sensitivity analysis of the node “Sighting value” was performed using the Netica function “Sensitivity to findings”. 

Based on the sensitivity analysis, the most important threat to cetaceans is pollution. Whale-watching operators’ 

knowledge is an important factor in reducing the negative impacts of whale watching.   
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6.6.5 Description of the network nodes 

Table 6.6-1: Description of nodes in the avalanche protection Bayesian Network, their states, and methods use to quantify 

their conditional probabilities. 

Node Description States CPT method 

Spatial inputs 

Possible feeding 

ground 

Probability derived from habitat 

suitability model by (Druon et al., 

2012) 

Boolean   

Sighting records Combination of sighting records from 

various sources 

Boolean   

Harmful noise Noise from harbours, military 

exercises, offshore drilling, seismic 

surveys, mapped by ACCOBAMS. 

Boolean   

Harmful pollution 

(shipping) 

Pollution from maritime traffic, 

mapped in the Med-IAMER project 

Boolean   

High unnatural death 

risk (ship strikes) 

Risk of ship strikes (Vaes and Druon, 

2013). 

Boolean   

Pressure       

Harmful whale 

watching 

Harmful actions by whale-watchers, 

e.g. approaching the cetaceans to 

closely. 

Often 

Rare 

Expert estimate 

Threats to cetacean 

wellbeing 

Combined probability of threats. Boolean Combination of 

threats, using 

weights defined by 

experts 

Demand 

Tour presence Spatial data on tour locations, 

collected through participatory 

mapping at stakeholder workshop. 

Boolean   

WW operator 

knowledge about 

good behaviour 

Personal knowledge of the boat 

operators and management about 

non-harmful behaviour. 

Good 

Bad 

Expert estimate 

Adaption of 

Sustainable WW label 

The code of conduct is defined by the 

Pelagos sanctuary board of 

administration. 

Labelled 

No label 

Expert estimate 

Season The season affects the visitors (more 

locals off-season) 

Offseason 

Season 
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Tourist origin Local visitors have higher 

expectations. 

Local 

Non-local 

Expert estimate 

WW operator origin Higher pressure of competition 

among French WW companies. 

French 

Italian 

Expert estimate 

Pressure of 

competition 

The feeling of whale watching 

operators to be under pressure to 

deliver a better experience to 

customers than other operators, 

caused by the business environment. 

High pressure reduces the likelihood 

to follow any rules. 

High 

Low 

Expert estimate 

Public knowledge 

trend 

The amount of knowledge of the 

public about cetaceans. 

High 

Not informed 

Expert estimate 

Perceived cetacean 

vulnerability 

The perception of the cetacean  

vulnerability in the Pelagos sanctuary 

by different stakeholder groups. 

Endangered 

Not endangered 

Expert estimate 

Encounter frequency An encounter with cetaceans is more 

highly valued if such encounters are 

rare. 

Rare 

Frequent 

Expert estimate 

Value per cetacean Social value of seeing a cetacean. High 

Medium 

Low 

Expert estimate 

Potential ES provision       

Sighting probability Probability of cetacean presence, 

reduced in case of threats 

Boolean Expert estimate 

Ecosystem service       

Tour-cetacean 

encounter 

Tour and cetacean in the same 

location at the same time. 

Boolean Combination of tour 

presence and 

sighting probability 

Sighting value Value of cetacean sighting. High 

Medium 

Low 

None 

Combination of 

encounter and value 

per cetacean. 
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